Hybrid Silicon Nanowire Devices and Their Functional Diversity

Abstract In the pool of nanostructured materials, silicon nanostructures are known as conventionally used building blocks of commercially available electronic devices. Their application areas span from miniaturized elements of devices and circuits to ultrasensitive biosensors for diagnostics. In this Review, the current trends in the developments of silicon nanowire‐based devices are summarized, and their functionalities, novel architectures, and applications are discussed from the point of view of analog electronics, arisen from the ability of (bio)chemical gating of the carrier channel. Hybrid nanowire‐based devices are introduced and described as systems decorated by, e.g., organic complexes (biomolecules, polymers, and organic films), aimed to substantially extend their functionality, compared to traditional systems. Their functional diversity is explored considering their architecture as well as areas of their applications, outlining several groups of devices that benefit from the coatings. The first group is the biosensors that are able to represent label‐free assays thanks to the attached biological receptors. The second group is represented by devices for optoelectronics that acquire higher optical sensitivity or efficiency due to the specific photosensitive decoration of the nanowires. Finally, the so‐called new bioinspired neuromorphic devices are shown, which are aimed to mimic the functions of the biological cells, e.g., neurons and synapses.

[1]  A. Fujiwara,et al.  Selective layer-free blood serum ionogram based on ion-specific interactions with a nanotransistor , 2018, Nature Materials.

[2]  T. Voitsekhivska,et al.  Portable measurement system for silicon nanowire field-effect transistor-based biosensors , 2013, Proceedings of the 36th International Spring Seminar on Electronics Technology.

[3]  Charles M Lieber,et al.  Large-area blown bubble films of aligned nanowires and carbon nanotubes. , 2007, Nature nanotechnology.

[4]  Charles M. Lieber,et al.  Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. , 2010, Nano letters.

[5]  Guido A. Drago,et al.  Bioconjugation and stabilisation of biomolecules in biosensors , 2016, Essays in biochemistry.

[6]  Cheng Cheng,et al.  Rapid detection of progesterone by commercially available microelectrode chips , 2013, 2013 IEEE SENSORS.

[7]  Michel Calame,et al.  Understanding the electrolyte background for biochemical sensing with ion-sensitive field-effect transistors. , 2012, ACS nano.

[8]  B. P. Swain,et al.  Fabrication and characterization of silicon nanowires hybrid Solar cells: A Review , 2018, IOP Conference Series: Materials Science and Engineering.

[9]  Eli Flaxer,et al.  Supersensitive detection of explosives by silicon nanowire arrays. , 2010, Angewandte Chemie.

[10]  C. Grigoropoulos,et al.  Bioelectronic silicon nanowire devices using functional membrane proteins , 2009, Proceedings of the National Academy of Sciences.

[11]  Hailong Hu,et al.  Tailoring Optical Properties of Silicon Nanowires by Au Nanostructure Decorations: Enhanced Raman Scattering and Photodetection , 2012 .

[12]  Andreas Offenhäusser,et al.  Action potentials of HL-1 cells recorded with silicon nanowire transistors , 2009 .

[13]  Kyunghoon Kim,et al.  Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins. , 2016, Nature nanotechnology.

[14]  Chao Xie,et al.  Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors. , 2014, ACS nano.

[15]  P Bergveld,et al.  Development of an ion-sensitive solid-state device for neurophysiological measurements. , 1970, IEEE transactions on bio-medical engineering.

[16]  Juan G. Santiago,et al.  A review of micropumps , 2004 .

[17]  Ziran Zhao,et al.  Ultra-broadband photodetector for the visible to terahertz range by self-assembling reduced graphene oxide-silicon nanowire array heterojunctions. , 2014, Small.

[18]  T. Krauss,et al.  Silicon nanostructures for photonics and photovoltaics. , 2014, Nature nanotechnology.

[19]  R. V. Martinez,et al.  Silicon nanowire circuits fabricated by AFM oxidation nanolithography , 2010, Nanotechnology.

[20]  Jan H. Jensen,et al.  Effects of buffer composition and dilution on nanowire field-effect biosensors , 2013, Nanotechnology.

[21]  Nanowire size dependence on sensitivity of silicon nanowire field-effect transistor-based pH sensor , 2017 .

[22]  Jon-Paul Maria,et al.  Alternative dielectrics to silicon dioxide for memory and logic devices , 2000, Nature.

[23]  Yit‐Tsong Chen,et al.  Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation , 2011 .

[24]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[25]  Yuxiang Qin,et al.  Ultrasensitive Silicon Nanowire Sensor Developed by a Special Ag Modification Process for Rapid NH3 Detection. , 2017, ACS applied materials & interfaces.

[26]  D. Choi,et al.  13.2% efficiency Si nanowire/PEDOT:PSS hybrid solar cell using a transfer-imprinted Au mesh electrode , 2015, Scientific Reports.

[27]  Eric Mazur,et al.  Microstructured silicon photodetector , 2006 .

[28]  T. Subramani,et al.  Low-Pressure-Assisted Coating Method To Improve Interface between PEDOT:PSS and Silicon Nanotips for High-Efficiency Organic/Inorganic Hybrid Solar Cells via Solution Process. , 2016, ACS applied materials & interfaces.

[29]  Yusuf Leblebici,et al.  Memristive-Biosensors: A New Detection Method by Using Nanofabricated Memristors , 2012 .

[30]  Hyunsung Park,et al.  Filter-free image sensor pixels comprising silicon nanowires with selective color absorption. , 2014, Nano letters.

[31]  C-T Lin,et al.  A CMOS wireless biomolecular sensing system-on-chip based on polysilicon nanowire technology. , 2013, Lab on a chip.

[32]  Jennifer Hasler,et al.  Special report : Can we copy the brain? - A road map for the artificial brain , 2017, IEEE Spectrum.

[33]  Xiaolin Zheng,et al.  Vertical transfer of uniform silicon nanowire arrays via crack formation. , 2011, Nano letters.

[34]  Jia Liu,et al.  Three-dimensional mapping and regulation of action potential propagation in nanoelectronics innervated tissues , 2016, Nature nanotechnology.

[35]  A. Noy,et al.  Silicon Nanoribbon pH Sensors Protected by a Barrier Membrane with Carbon Nanotube Porins. , 2018, Nano letters.

[36]  Zhiyong Li,et al.  Ionic/Electronic Hybrid Materials Integrated in a Synaptic Transistor with Signal Processing and Learning Functions , 2010, Advanced materials.

[37]  Yi Cui,et al.  Controlled Growth and Structures of Molecular-Scale Silicon Nanowires , 2004 .

[38]  Stefan Slesazeck,et al.  Reconfigurable silicon nanowire transistors. , 2012, Nano letters.

[39]  Cesare Soci,et al.  Silicon nanowire detectors showing phototransistive gain , 2008 .

[40]  Gengfeng Zheng,et al.  Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays , 2006, Science.

[41]  Ernst J. R. Sudhölter,et al.  Silicon Nanowire-Based Devices for Gas-Phase Sensing , 2013, Sensors.

[42]  Tien-Sheng Chao,et al.  Improvement in pH Sensitivity of Low-Temperature Polycrystalline-Silicon Thin-Film Transistor Sensors Using H2 Sintering , 2014, Sensors.

[43]  A. Wei,et al.  Structural and electrical properties of Ta2O5 thin films prepared by photo-induced CVD , 2011 .

[44]  L. Selmi,et al.  Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays. , 2015, Nature nanotechnology.

[45]  Yunjie Yan,et al.  Aligned single-crystalline Si nanowire arrays for photovoltaic applications. , 2005, Small.

[46]  M. Meyyappan,et al.  Silicon nanowire biosensors for detection of cardiac troponin I (cTnI) with high sensitivity. , 2016, Biosensors & bioelectronics.

[47]  Lei Jiang,et al.  Photoelectric conversion behavior based on direct interfacial charge-transfer from porphyrin derivative to silicon nanowires , 2010 .

[48]  Charles M. Lieber,et al.  Synthetic nanoelectronic probes for biological cells and tissues. , 2013, Annual review of analytical chemistry.

[49]  Peidong Yang,et al.  Absorption of light in a single-nanowire silicon solar cell decorated with an octahedral silver nanocrystal. , 2011, Nano letters.

[50]  Pengfei Dai,et al.  Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. , 2011, Nano letters.

[51]  G. Briggs,et al.  One dimensional transport in silicon nanowire junction-less field effect transistors , 2017, Scientific Reports.

[52]  G. Cuniberti,et al.  Lab on a Wire: Application of Silicon Nanowires for Nanoscience and Biotechnology , 2014 .

[53]  Akira Yamada,et al.  Detection of Micrococcus Luteus Biofilm Formation in Microfluidic Environments by pH Measurement Using an Ion-Sensitive Field-Effect Transistor , 2013, Sensors.

[54]  Liwei Lin,et al.  Electric-field assisted growth and self-assembly of intrinsic silicon nanowires. , 2005, Nano letters.

[55]  Metal-coated microfluidic channels: An approach to eliminate streaming potential effects in nano biosensors. , 2017, Biosensors & bioelectronics.

[56]  Zongfu Yu,et al.  Semiconductor nanowire optical antenna solar absorbers. , 2010, Nano letters.

[57]  Yun-Chorng Chang,et al.  Surface potential variations on a silicon nanowire transistor in biomolecular modification and detection , 2011, Nanotechnology.

[58]  Shu-Ping Lin,et al.  Investigation into the Effect of Varied Functional Biointerfaces on Silicon Nanowire MOSFETs , 2012, Sensors.

[59]  J. Maserjian,et al.  Tunneling in thin MOS structures , 1974 .

[60]  Y. Hao,et al.  Transparent electromagnetic shielding enclosure with CVD graphene , 2016 .

[61]  J. Eijkel,et al.  A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters , 1995 .

[62]  W.S. Gorton The Genesis Of The Transistor , 1998, Proceedings of the IEEE.

[63]  Pt nanoparticle/Si nanowire composites as an excellent catalytic counter electrode for dye-sensitized solar cells , 2018 .

[64]  M. Reed,et al.  Nanoelectronic Platform for Ultrasensitive Detection of Protein Biomarkers in Serum using DNA Amplification. , 2017, Analytical chemistry.

[65]  P. Yang Nanowire Photonics , 2007, 2007 International Nano-Optoelectronics Workshop.

[66]  Marina V Shirmanova,et al.  Relationship between intracellular pH, metabolic co-factors and caspase-3 activation in cancer cells during apoptosis. , 2017, Biochimica et biophysica acta. Molecular cell research.

[67]  Y. Ohno,et al.  Label-free biosensors based on aptamer-modified graphene field-effect transistors. , 2010, Journal of the American Chemical Society.

[68]  Charles M Lieber,et al.  Synthetically encoded ultrashort-channel nanowire transistors for fast, pointlike cellular signal detection. , 2012, Nano letters.

[69]  Ilya Sychugov,et al.  Surface charge sensitivity of silicon nanowires: size dependence. , 2007, Nano letters.

[70]  Shui-Tong Lee,et al.  Core-shell structured photovoltaic devices based on PbS quantum dots and silicon nanopillar arrays. , 2012, Nanoscale.

[71]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[72]  Moon J. Kim,et al.  MoS2 transistors with 1-nanometer gate lengths , 2016, Science.

[73]  F. Schwierz Graphene transistors. , 2010, Nature nanotechnology.

[74]  F. Tseng,et al.  Detection of K+ Efflux from Stimulated Cortical Neurons by an Aptamer-Modified Silicon Nanowire Field-Effect Transistor. , 2017, ACS sensors.

[75]  Liwei Chen,et al.  Si/PEDOT:PSS core/shell nanowire arrays for efficient hybrid solar cells. , 2011, Nanoscale.

[76]  Bozhi Tian,et al.  Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor , 2011, Nature nanotechnology.

[77]  Jörg Opitz,et al.  Gating Hysteresis as an Indicator for Silicon Nanowire FET Biosensors , 2018, Applied Sciences.

[78]  S. Herculano‐Houzel The Human Brain in Numbers: A Linearly Scaled-up Primate Brain , 2009, Front. Hum. Neurosci..

[79]  J. D. de Visser,et al.  Nanowire sensors monitor bacterial growth kinetics and response to antibiotics. , 2017, Lab on a chip.

[80]  Y. Calahorra,et al.  Catalyst shape engineering for anisotropic cross-sectioned nanowire growth , 2017, Scientific Reports.

[81]  A simple two-step silane-based (bio-) receptor molecule immobilization without additional binding site passivation , 2015 .

[82]  Antonio J. García-Loureiro,et al.  Impact of Cross-Sectional Shape on 10-nm Gate Length InGaAs FinFET Performance and Variability , 2018, IEEE Transactions on Electron Devices.

[83]  L. Semprini,et al.  Graphene Biotransistor Interfaced with a Nitrifying Biofilm , 2015 .

[84]  Y. Mei,et al.  Artificial neuron synapse transistor based on silicon nanomembrane on plastic substrate , 2017 .

[85]  Giovanni De Micheli,et al.  Memristive sensors for pH measure in dry conditions , 2014 .

[86]  Fangfang Sun,et al.  A high-energy-density sugar biobattery based on a synthetic enzymatic pathway , 2014, Nature Communications.

[87]  S. Ingebrandt,et al.  Impedimetric Sensing of DNA with Silicon Nanowire Transistors as Alternative Transducer Principle , 2018 .

[88]  A. Mansur,et al.  Chemical functionalization of surfaces for building three-dimensional engineered biosensors , 2013 .

[89]  Charles M. Lieber,et al.  Three-Dimensional, Flexible Nanoscale Field-Effect Transistors as Localized Bioprobes , 2010, Science.

[90]  Charles M. Lieber,et al.  Directed assembly of one-dimensional nanostructures into functional networks. , 2001, Science.

[91]  J. Robertson High dielectric constant gate oxides for metal oxide Si transistors , 2006 .

[92]  Andreas Offenhäusser,et al.  Toward Intraoperative Detection of Disseminated Tumor Cells in Lymph Nodes with Silicon Nanowire Field Effect Transistors. , 2016, ACS nano.

[93]  Zhong Lin Wang,et al.  Silicon Nanowire/Polymer Hybrid Solar Cell-Supercapacitor: A Self-Charging Power Unit with a Total Efficiency of 10.5. , 2017, Nano letters.

[94]  A. Alec Talin,et al.  A Perspective on Nanowire Photodetectors: Current Status, Future Challenges, and Opportunities , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[95]  John A. Rogers,et al.  Thin, Transferred Layers of Silicon Dioxide and Silicon Nitride as Water and Ion Barriers for Implantable Flexible Electronic Systems , 2017 .

[96]  Bernard P. Puc,et al.  An integrated semiconductor device enabling non-optical genome sequencing , 2011, Nature.

[97]  Yaping Dan,et al.  Optoelectronically probing the density of nanowire surface trap states to the single state limit , 2014 .

[98]  M. Dutta,et al.  High Efficiency Hybrid Solar Cells Using Nanocrystalline Si Quantum Dots and Si Nanowires. , 2015, ACS nano.

[99]  P. Gao,et al.  Air heating approach for multilayer etching and roll-to-roll transfer of silicon nanowire arrays as SERS substrates for high sensitivity molecule detection. , 2014, ACS applied materials & interfaces.

[100]  Sungho Kim,et al.  Bio‐Inspired Complementary Photoconductor by Porphyrin‐Coated Silicon Nanowires , 2011, Advanced materials.

[101]  Hagit Peretz-Soroka,et al.  Optically-gated self-calibrating nanosensors: monitoring pH and metabolic activity of living cells. , 2013, Nano letters.

[102]  Han-Don Um,et al.  Embedded Metal Electrode for Organic-Inorganic Hybrid Nanowire Solar Cells. , 2017, ACS nano.

[103]  Cesare Soci,et al.  Nanowire photodetectors. , 2010, Journal of nanoscience and nanotechnology.

[104]  Nathan S Lewis,et al.  Photovoltaic measurements in single-nanowire silicon solar cells. , 2008, Nano letters.

[105]  G. Schatten,et al.  Adhesion of cells to surfaces coated with polylysine. Applications to electron microscopy , 1975, The Journal of cell biology.

[106]  A. Polman,et al.  Photovoltaic materials: Present efficiencies and future challenges , 2016, Science.

[107]  T. Lai,et al.  Non-Faradaic electrical impedimetric investigation of the interfacial effects of neuronal cell growth and differentiation on silicon nanowire transistors. , 2015, ACS applied materials & interfaces.

[108]  Jörg Opitz,et al.  Patterned biochemical functionalization improves aptamer-based detection of unlabeled thrombin in a sandwich assay. , 2013, ACS applied materials & interfaces.

[109]  M. Brand,et al.  The contributions of respiration and glycolysis to extracellular acid production. , 2015, Biochimica et biophysica acta.

[110]  Hong-Jhang Syu,et al.  Silicon nanowire/organic hybrid solar cell with efficiency of 8.40% , 2012 .

[111]  M. Egholm,et al.  Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. , 1991, Science.

[112]  Sandeep Kumar Vashist,et al.  Point-of-Care Diagnostics: Recent Advances and Trends , 2017, Biosensors.

[113]  R. Stoop,et al.  True reference nanosensor realized with silicon nanowires. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[114]  Zongfu Yu,et al.  Subwavelength angle-sensing photodetectors inspired by directional hearing in small animals , 2018, Nature Nanotechnology.

[115]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[116]  T. Pan,et al.  Label-free Detection of Prostate Specific Antigen Using a Silicon Nanobelt Field-effect Transistor , 2012, International Journal of Electrochemical Science.

[117]  P. Yu,et al.  Rear interface engineering of hybrid organic-silicon nanowire solar cells via blade coating. , 2016, Optics express.

[118]  Byung Chul Jang,et al.  A Recoverable Synapse Device Using a Three‐Dimensional Silicon Transistor , 2018, Advanced Functional Materials.

[119]  Carver A. Mead,et al.  Neuromorphic electronic systems , 1990, Proc. IEEE.

[120]  Ya-Ting Chung,et al.  An ultrasensitive nanowire-transistor biosensor for detecting dopamine release from living PC12 cells under hypoxic stimulation. , 2013, Journal of the American Chemical Society.

[121]  T. Osaka,et al.  Sensitive electrical detection of human prion proteins using field effect transistor biosensor with dual-ligand binding amplification. , 2015, Biosensors & bioelectronics.

[122]  Jr-hau He,et al.  Above-11%-efficiency organic-inorganic hybrid solar cells with omnidirectional harvesting characteristics by employing hierarchical photon-trapping structures. , 2013, Nano letters.

[123]  P. Yadava,et al.  Nucleic Acid Aptamers: Research Tools in Disease Diagnostics and Therapeutics , 2014, BioMed research international.

[124]  F. Xia,et al.  Anisotropic Black Phosphorus Synaptic Device for Neuromorphic Applications , 2016, Advanced materials.

[125]  A. Ayón,et al.  Ultrathin, flexible organic-inorganic hybrid solar cells based on silicon nanowires and PEDOT:PSS. , 2014, ACS applied materials & interfaces.

[126]  Xuefeng Guo,et al.  Carbon nanomaterials field-effect-transistor-based biosensors , 2012 .

[127]  Federico Capasso,et al.  Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors. , 2006, Nano letters.

[128]  Hyunsang Hwang,et al.  Organic core-sheath nanowire artificial synapses with femtojoule energy consumption , 2016, Science Advances.

[129]  Charles M Lieber,et al.  Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection , 2006, Nature materials.

[130]  Tetsuya Osaka,et al.  Field Effect Transistor Biosensor Using Antigen Binding Fragment for Detecting Tumor Marker in Human Serum , 2014, Materials.

[131]  Igor L. Medintz,et al.  Nanomaterial-based sensors for the detection of biological threat agents , 2016, Materials Today.

[132]  M. Meyyappan,et al.  Optimized operation of silicon nanowire field effect transistor sensors , 2014, Nanotechnology.

[133]  Shui-Tong Lee,et al.  Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture. , 2011, Journal of the American Chemical Society.

[134]  B. Korgel,et al.  Solution-liquid-solid (SLS) growth of silicon nanowires. , 2008, Journal of the American Chemical Society.

[135]  Hiroyuki Noji,et al.  Direct real-time detection of single proteins using silicon nanowire-based electrical circuits. , 2016, Nanoscale.

[136]  Sven Ingebrandt Bioelectronics: Sensing beyond the limit. , 2015, Nature nanotechnology.

[137]  Jae-Young Yu,et al.  Silicon Nanowires: Preparation, Device Fabrication, and Transport Properties , 2000 .

[138]  Photoconductive response of strained silicon nanowires: A Monte Carlo study , 2014, 1708.08271.

[139]  Inkyu Park,et al.  Selective surface functionalization of silicon nanowires via nanoscale joule heating. , 2007, Nano letters.

[140]  A. Folch,et al.  A multi-purpose microfluidic perfusion system with combinatorial choice of inputs, mixtures, gradient patterns, and flow rates. , 2009, Lab on a chip.

[141]  U. Chettiar,et al.  An invisible metal–semiconductor photodetector , 2012, Nature Photonics.

[142]  B. Mizaikoff,et al.  A closer look at the surface modification of silicon nanowire sensors , 2015, 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO).

[143]  Tadao Nagatsuma,et al.  Terahertz wireless communication using GaAs transistors as detectors , 2014 .

[144]  Arthur Zhang,et al.  Ultrahigh responsivity visible and infrared detection using silicon nanowire phototransistors. , 2010, Nano letters.

[145]  Hui Pan,et al.  Growth of Si nanowires by thermal evaporation , 2005 .

[146]  Jörg Opitz,et al.  Schottky barrier-based silicon nanowire pH sensor with live sensitivity control , 2014, Nano Research.

[147]  Gengfeng Zheng,et al.  Frequency domain detection of biomolecules using silicon nanowire biosensors. , 2010, Nano letters.

[148]  Ekmel Ozbay,et al.  Silicon nanowire network metal-semiconductor-metal photodetectors , 2013 .

[149]  C. Winkelmann,et al.  Optical switching of porphyrin-coated silicon nanowire field effect transistors. , 2007, Nano letters.

[150]  Thomas Mikolajick,et al.  Optoelectronic switching of nanowire-based hybrid organic/oxide/semiconductor field-effect transistors , 2015, Nano Research.

[151]  H. Dallaporta,et al.  A field effect transistor biosensor with a γ-pyrone derivative engineered lipid-sensing layer for ultrasensitive Fe3+ ion detection with low pH interference. , 2014, Biosensors & bioelectronics.

[152]  Ki-Young Lee,et al.  Vertical nanowire probes for intracellular signaling of living cells , 2014, Nanoscale Research Letters.

[153]  L. D. Negro,et al.  Optical gain in silicon nanocrystals , 2000, Nature.

[154]  G. Cuniberti,et al.  Negative Photoconductance in Heavily Doped Si Nanowire Field-Effect Transistors. , 2017, Nano letters.

[155]  S. Ingebrandt,et al.  Silicon Nanowire Field-Effect Biosensors , 2018 .

[156]  Young Sun,et al.  A Synaptic Transistor based on Quasi‐2D Molybdenum Oxide , 2017, Advanced materials.

[157]  Robert Margolis,et al.  A new era for solar , 2017 .

[158]  G. Whitesides,et al.  Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). , 1998, Analytical chemistry.

[159]  Jindong Wang,et al.  Point decoration of silicon nanowires: an approach toward single-molecule electrical detection. , 2014, Angewandte Chemie.

[160]  T. Fujii,et al.  Comparison of mechanical characteristics of focused ion beam fabricated silicon nanowires , 2017 .

[161]  L. Forró,et al.  A nanoscale probe for fluidic and ionic transport. , 2007, Nature nanotechnology.

[162]  Jurriaan Huskens,et al.  Metal-Organic Polyhedra-Coated Si Nanowires for the Sensitive Detection of Trace Explosives. , 2017, Nano letters.

[163]  Tian-Ling Ren,et al.  Synaptic Computation Demonstrated in a Two-Synapse Network Based on Top-Gate Electric-Double-Layer Synaptic Transistors , 2017, IEEE Electron Device Letters.

[164]  Sang Woon Lee,et al.  Capacitors with an Equivalent Oxide Thickness of <0.5 nm for Nanoscale Electronic Semiconductor Memory , 2010 .

[165]  Li Qiang Zhu,et al.  Memory and learning behaviors mimicked in nanogranular SiO2-based proton conductor gated oxide-based synaptic transistors. , 2013, Nanoscale.

[166]  Tien-Sheng Chao,et al.  Label-free and real-time detection of ferritin using a horn-like polycrystalline-silicon nanowire field-effect transistor biosensor , 2016 .

[167]  C. Hu,et al.  Sub-50 nm P-channel FinFET , 2001 .

[168]  Charles M Lieber,et al.  Flexible electrical recording from cells using nanowire transistor arrays , 2009, Proceedings of the National Academy of Sciences.

[169]  Leszek Golonka,et al.  Serpentine microfluidic mixer made in LTCC , 2009 .

[170]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[171]  S. Quake,et al.  Dynamic pattern formation in a vesicle-generating microfluidic device. , 2001, Physical review letters.

[172]  Barry Merriman,et al.  Progress in Ion Torrent semiconductor chip based sequencing , 2012, Electrophoresis.

[173]  M. Dutta,et al.  Inorganic/organic hybrid solar cells: optimal carrier transport in vertically aligned silicon nanowire arrays. , 2014, Nanoscale.

[174]  Guosong Hong,et al.  Mesh Nanoelectronics: Seamless Integration of Electronics with Tissues. , 2018, Accounts of chemical research.

[175]  Sushanta K. Mitra,et al.  Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl)triethoxysilane (APTES) and glutaraldehyde linker , 2014 .

[176]  L. Lauhon,et al.  Spatially resolved plasmonically enhanced photocurrent from Au nanoparticles on a Si nanowire. , 2011, Nano letters.

[177]  T. Mikolajick,et al.  Microfluidic alignment and trapping of 1D nanostructures – a simple fabrication route for single-nanowire field effect transistors , 2015 .

[178]  T. Ning,et al.  Optimization of pH sensing using silicon nanowire field effect transistors with HfO2 as the sensing surface , 2011, Nanotechnology.

[179]  Zhaohui Zhong,et al.  Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor. , 2012, Nano letters.

[180]  G. Orive,et al.  Cellular acidification as a new approach to cancer treatment and to the understanding and therapeutics of neurodegenerative diseases. , 2017, Seminars in cancer biology.

[181]  Boaz Barak,et al.  Highly ordered large-scale neuronal networks of individual cells - toward single cell to 3D nanowire intracellular interfaces. , 2012, ACS applied materials & interfaces.

[182]  Michael C. McAlpine,et al.  Scalable Interconnection and Integration of Nanowire Devices without Registration , 2004 .

[183]  Wei Lu,et al.  TOPICAL REVIEW: Semiconductor nanowires , 2006 .

[184]  Charles M. Lieber,et al.  Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors , 2004 .

[185]  D. Flandre,et al.  Tuning the surface conditioning of trapezoidally shaped silicon nanowires by (3-aminopropyl)triethoxysilane. , 2014 .

[186]  N. Petkov,et al.  Semiconductor Nanowire Fabrication by Bottom-Up and Top-Down Paradigms , 2012 .

[187]  Thomas J. Macdonald,et al.  Photoresponsive properties of ultrathin silicon nanowires , 2014 .

[188]  Min-Yi Shih,et al.  Strong broadband optical absorption in silicon nanowire films , 2007 .

[189]  Gengfeng Zheng,et al.  Electrical detection of single viruses. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[190]  Ronald Tetzlaff,et al.  Ultrasensitive detection of Ebola matrix protein in a memristor mode , 2018, Nano Research.

[191]  Gengfeng Zheng,et al.  Nanowire sensors for medicine and the life sciences. , 2006, Nanomedicine.

[192]  Moon-Ho Jo,et al.  Electrical detection of VEGFs for cancer diagnoses using anti-vascular endotherial growth factor aptamer-modified Si nanowire FETs. , 2009, Biosensors & bioelectronics.

[193]  C. Grigoropoulos,et al.  Bioelectronic Light‐Gated Transistors with Biologically Tunable Performance , 2015, Advanced materials.

[194]  Sandro Carrara,et al.  Label-Free Ultrasensitive Memristive Aptasensor. , 2016, Nano letters.

[195]  Teresa A. P. Rocha-Santos,et al.  Recent Progress in Biosensors for Environmental Monitoring: A Review , 2017, Sensors.

[196]  Dong Liu,et al.  Flexible Near-Infrared Photovoltaic Devices Based on Plasmonic Hot-Electron Injection into Silicon Nanowire Arrays. , 2016, Angewandte Chemie.

[197]  L. Luo,et al.  Silicon/Perovskite Core-Shell Heterojunctions with Light-Trapping Effect for Sensitive Self-Driven Near-Infrared Photodetectors. , 2018, ACS applied materials & interfaces.

[198]  A D Ellington,et al.  Aptamers as therapeutic and diagnostic reagents: problems and prospects. , 1997, Current opinion in chemical biology.

[199]  Rusli,et al.  High efficiency silicon nanowire/organic hybrid solar cells with two-step surface treatment. , 2015, Nanoscale.

[200]  C. Schönenberger,et al.  Nernst limit in dual-gated Si-nanowire FET sensors. , 2010, Nano letters.

[201]  Charles M Lieber,et al.  Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design. , 2012, Nano letters.

[202]  Mark A. Reed,et al.  Silicon Nanowire Field-Effect Transistors—A Versatile Class of Potentiometric Nanobiosensors , 2015, IEEE Access.

[203]  Sapan Agarwal,et al.  Li‐Ion Synaptic Transistor for Low Power Analog Computing , 2017, Advanced materials.

[204]  Bor-Ran Li,et al.  Silicon nanowire field-effect-transistor based biosensors: from sensitive to ultra-sensitive. , 2014, Biosensors & bioelectronics.

[205]  Giovanni De Micheli,et al.  SiNW-FET in-Air Biosensors for High Sensitive and Specific Detection in Breast Tumor Extract , 2016, IEEE Sensors Journal.

[206]  J. Bonevich,et al.  Discrete charge states in nanowire flash memory with multiple Ta2O5 charge-trapping stacks , 2014 .

[207]  S. Ingebrandt,et al.  On the Use of Scalable NanoISFET Arrays of Silicon with Highly Reproducible Sensor Performance for Biosensor Applications , 2016, ACS omega.

[208]  Martin A. Green,et al.  Solar cell efficiency tables (version 52) , 2018, Progress in Photovoltaics: Research and Applications.

[209]  A. Hierlemann,et al.  Sensor system including silicon nanowire ion sensitive FET arrays and CMOS readout , 2014 .

[210]  Thi Thu Thuy Nguyen,et al.  An innovative large scale integration of silicon nanowire-based field effect transistors , 2017 .

[211]  Wei Zhou,et al.  General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors. , 2015, Nano letters.

[212]  Zhiyong Fan,et al.  Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. , 2008, Nano letters.

[213]  F. Patolsky,et al.  Biorecognition layer engineering: overcoming screening limitations of nanowire-based FET devices. , 2012, Nano letters.

[214]  Rashid Bashir,et al.  Silicon nanowires with high-k hafnium oxide dielectrics for sensitive detection of small nucleic acid oligomers. , 2012, ACS nano.

[215]  N. Rius,et al.  Rapid extracellular acidification induced by glucose metabolism in non-proliferating cells of Serratia marcescens. , 2000, International microbiology : the official journal of the Spanish Society for Microbiology.

[216]  Charles M. Lieber,et al.  Diameter-controlled synthesis of single-crystal silicon nanowires , 2001 .

[217]  Anthony P F Turner,et al.  Biosensors: sense and sensibility. , 2013, Chemical Society reviews.

[218]  Xiao Yang,et al.  Specific detection of biomolecules in physiological solutions using graphene transistor biosensors , 2016, Proceedings of the National Academy of Sciences.

[219]  T. Mikolajick,et al.  Compact Nanowire Sensors Probe Microdroplets. , 2016, Nano letters.

[220]  M. Meyyappan,et al.  Suspended honeycomb nanowire ISFETs for improved stiction-free performance , 2014, Nanotechnology.

[221]  Nitin K. Rajan,et al.  Complementary metal oxide semiconductor-compatible silicon nanowire biofield-effect transistors as affinity biosensors. , 2013, Nanomedicine.

[222]  W. Bunjongpru,et al.  Surface modification of silicon dioxide, silicon nitride and titanium oxynitride for lactate dehydrogenase immobilization. , 2015, Biosensors & bioelectronics.

[223]  A. Llobera,et al.  Self-validating lab-on-a-chip for monitoring enzyme-catalyzed biological reactions , 2016 .

[224]  K. Banerjee,et al.  MoS₂ field-effect transistor for next-generation label-free biosensors. , 2014, ACS nano.

[225]  S. Thoms,et al.  Determining the electronic performance limitations in top-down-fabricated Si nanowires with mean widths down to 4 nm. , 2014, Nano letters.

[226]  Jacob T. Robinson,et al.  Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells , 2010, Proceedings of the National Academy of Sciences.

[227]  Rusli,et al.  Simple Approach of Fabricating High Efficiency Si Nanowire/Conductive Polymer Hybrid Solar Cells , 2011, IEEE Electron Device Letters.

[228]  Yusuf Leblebici,et al.  Memristive Biosensors Under Varying Humidity Conditions , 2014, IEEE Transactions on NanoBioscience.

[229]  R. Agarwal,et al.  Voltage-tunable circular photogalvanic effect in silicon nanowires , 2015, Science.

[230]  Ching-Fuh Lin,et al.  Morphology Dependence of Silicon Nanowire/Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Heterojunction Solar Cells , 2010 .

[231]  M. Hersam,et al.  Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide , 2018, Nature.

[232]  Z. Pei,et al.  A 14.7% Organic/Silicon Nanoholes Hybrid Solar Cell via Interfacial Engineering by Solution-Processed Inorganic Conformal Layer. , 2016, ACS applied materials & interfaces.

[233]  A. Trifonov,et al.  Biosensor based on a silicon nanowire field-effect transistor functionalized by gold nanoparticles for the highly sensitive determination of prostate specific antigen. , 2017, Biosensors & bioelectronics.

[234]  U. Hashim,et al.  Top-Down Nanofabrication and Characterization of 20 nm Silicon Nanowires for Biosensing Applications , 2016, PloS one.

[235]  Hyunjin Kim,et al.  Si nanowire metal–insulator–semiconductor photodetectors as efficient light harvesters , 2010, Nanotechnology.

[236]  Li Wang,et al.  Core–shell silicon nanowire array–Cu nanofilm Schottky junction for a sensitive self-powered near-infrared photodetector , 2016 .

[237]  Fred J Sigworth,et al.  Importance of the Debye screening length on nanowire field effect transistor sensors. , 2007, Nano letters.

[238]  Chen Yang,et al.  Semiconductor-Metal-Semiconductor Core-Multishell Nanowires as Negative-Index Metamaterial in Visible Domain , 2014, Scientific Reports.

[239]  Thomas Mikolajick,et al.  Parallel arrays of Schottky barrier nanowire field effect transistors: Nanoscopic effects for macroscopic current output , 2013, Nano Research.

[240]  Deren Yang,et al.  High Efficiency Organic/Silicon-Nanowire Hybrid Solar Cells: Significance of Strong Inversion Layer , 2015, Scientific Reports.

[241]  Shui-Tong Lee,et al.  Heterojunction with organic thin layer for three dimensional high performance hybrid solar cells , 2012 .

[242]  Peidong Yang,et al.  Direct Observation of Vapor-Liquid-Solid Nanowire Growth , 2001 .

[243]  Cheol Seong Hwang,et al.  Al‐Doped TiO2 Films with Ultralow Leakage Currents for Next Generation DRAM Capacitors , 2008 .

[244]  Gengfeng Zheng,et al.  Multiplexed electrical detection of cancer markers with nanowire sensor arrays , 2005, Nature Biotechnology.

[245]  X. Ren,et al.  A High-Efficiency Si Nanowire Array/Perovskite Hybrid Solar Cell , 2017, Nanoscale Research Letters.

[246]  Xiaolin Zheng,et al.  Fabrication of flexible and vertical silicon nanowire electronics. , 2012, Nano letters.

[247]  Jong Wook Hong,et al.  Integrated nanoliter systems , 2003, Nature Biotechnology.

[248]  A. R. Ruslinda,et al.  Development of highly sensitive polysilicon nanogap with APTES/GOx based lab-on-chip biosensor to determine low levels of salivary glucose , 2014 .

[249]  Pedro Estrela,et al.  Introduction to biosensors , 2016, Essays in biochemistry.

[250]  M. Im,et al.  Charge and dielectric effects of biomolecules on electrical characteristics of nanowire FET biosensors , 2017 .

[251]  Tetsuya Osaka,et al.  Attomolar detection of influenza A virus hemagglutinin human H1 and avian H5 using glycan-blotted field effect transistor biosensor. , 2013, Analytical chemistry.

[252]  Daniil Karnaushenko,et al.  Light Weight and Flexible High‐Performance Diagnostic Platform , 2015, Advanced healthcare materials.

[253]  P. Yu,et al.  13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering. , 2013, ACS nano.

[254]  Angela Spanu,et al.  Enzyme Biosensors for Biomedical Applications: Strategies for Safeguarding Analytical Performances in Biological Fluids , 2016, Sensors.

[255]  Zongfu Yu,et al.  Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. , 2009, Nano letters.

[256]  Sungho Kim,et al.  Improved Electrical Characteristics of Honeycomb Nanowire ISFETs , 2013, IEEE Electron Device Letters.

[257]  Yunfang Zhang,et al.  High Performance Organic-Nanostructured Silicon Hybrid Solar Cell with Modified Surface Structure , 2018, Nanoscale Research Letters.

[258]  Andreas Hierlemann,et al.  Monolithic integration of a silicon nanowire field-effect transistors array on a complementary metal-oxide semiconductor chip for biochemical sensor applications. , 2015, Analytical chemistry.

[259]  Sung-Jin Choi,et al.  Carbon Nanotube Synaptic Transistor Network for Pattern Recognition. , 2015, ACS applied materials & interfaces.

[260]  Cheng-Chih Hsu,et al.  Multiple Silicon Nanowires with Enzymatic Modification for Measuring Glucose Concentration , 2015, Micromachines.

[261]  Xiaolin Zheng,et al.  Probing flow velocity with silicon nanowire sensors. , 2009, Nano letters.

[262]  E. Yavin,et al.  ATTACHMENT AND CULTURE OF DISSOCIATED CELLS FROM RAT EMBRYO CEREBRAL HEMISPHERES ON POLYLYSINE-COATED SURFACE , 1974, The Journal of cell biology.

[263]  Bozhi Tian,et al.  Single and tandem axial p-i-n nanowire photovoltaic devices. , 2008, Nano letters.

[264]  Zhenan Bao,et al.  A bioinspired flexible organic artificial afferent nerve , 2018, Science.

[265]  F. Patolsky,et al.  Multicolor Spectral-Specific Silicon Nanodetectors based on Molecularly Embedded Nanowires. , 2018, Nano letters (Print).

[266]  Hybrid porphyrin-silicon nanowire field-effect transistor by opto-electrical excitation. , 2012, ACS nano.

[267]  Gang Jin,et al.  Covalent immobilization of proteins for the biosensor based on imaging ellipsometry. , 2004, Journal of immunological methods.

[268]  R. Boukherroub,et al.  Biocompatibility of semiconducting silicon nanowires , 2014 .

[269]  Peter Ertl,et al.  Microfluidic Systems for Pathogen Sensing: A Review , 2009, Sensors.

[270]  Guosong Hong,et al.  Syringe-Injectable Electronics with a Plug-and-Play Input/Output Interface. , 2017, Nano letters.

[271]  Nathan S Lewis,et al.  Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. , 2010, Nature materials.

[272]  Daniele Ielmini,et al.  Resistive switching memories based on metal oxides: mechanisms, reliability and scaling , 2016 .

[273]  Yuchun Zhou,et al.  Bias dependence of sub-bandgap light detection for core-shell silicon nanowires. , 2012, Nano letters.

[274]  Jiwoong Park,et al.  Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors. , 2005, Nano letters.

[275]  Moon-Ho Jo,et al.  The fabrication, characterization and application of aptamer-functionalized Si-nanowire FET biosensors , 2009, Nanotechnology.