Using a second gradient model to simulate the behaviour of concrete structural elements

Abstract Being a quasi-brittle material, concrete under tensile loading exhibits a strain softening behaviour that cannot be accurately reproduced with classical (without an internal length parameter) continuum mechanics models. An internal length parameter must be introduced to regularize the problem, as in the case of the so-called second gradient model. In this approach, an enriched kinematic description of the continuum is adopted considering higher (second) order gradients of the displacements following the work of Cosserat, Toupin, Mindlin and Germain. The model has been developed by Chambon and co-workers and has been mainly used with plasticity constitutive laws to reproduce the non-linear behaviour of soils. It is here applied for the first time to concrete and reinforced concrete specimens considering material laws based on the damage mechanics theory. The advantages and limitations of the approach are discussed, and possible improvements towards more realistic responses are suggested.

[1]  Mgd Marc Geers,et al.  Localisation issues in local and nonlocal continuum approaches to fracture , 2002 .

[2]  On localization and regularization , 1995, hep-th/9508127.

[3]  J. Mazars APPLICATION DE LA MECANIQUE DE L'ENDOMMAGEMENT AU COMPORTEMENT NON LINEAIRE ET A LA RUPTURE DU BETON DE STRUCTURE , 1984 .

[4]  René Chambon,et al.  Plastic continuum with microstructure, Local Second Gradient Theories for Geomaterials : Localization Studies , 2001 .

[5]  Ignacio Carol,et al.  Discussions over MECA project results , 2003 .

[6]  Gioacchino Viggiani,et al.  Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry , 2004 .

[7]  Robert Charlier,et al.  An algorithm and a method to search bifurcation points in non‐linear problems , 2001 .

[8]  M. Frémond,et al.  Damage, gradient of damage and principle of virtual power , 1996 .

[9]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[10]  N. Chevaugeon,et al.  A level set based model for damage growth: The thick level set approach , 2011 .

[11]  M. Jirásek Mathematical analysis of strain localization , 2007 .

[12]  Ahmed Loukili,et al.  Crack propagation and size effect in concrete using a non-local damage model , 2013 .

[13]  F. Dufour,et al.  Stress-based nonlocal damage model , 2011 .

[14]  Gaël Combe,et al.  Experimental micromechanical analysis of a 2D granular material: relation between structure evolution and loading path , 1997 .

[15]  R. Chambon,et al.  Etude de la localisation unidimensionnelle à l'aide d'un modèle de second gradient , 1996 .

[16]  Zdenek P. Bazant,et al.  Instability, Ductility, and Size Effect in Strain-Softening Concrete , 1978 .

[17]  Z. Bažant,et al.  Crack band theory for fracture of concrete , 1983 .

[18]  René Chambon,et al.  Uniqueness studies in boundary value problems involving some second gradient models , 2004 .

[19]  Frédéric Collin,et al.  SWITCHING DEFORMATION MODES IN POST-LOCALIZATION SOLUTIONS WITH A QUASIBRITTLE MATERIAL , 2006 .

[20]  P. Germain,et al.  The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure , 1973 .

[21]  Eric Lorentz,et al.  Gradient damage models: Toward full-scale computations , 2011 .

[22]  René Chambon,et al.  Large strain finite element analysis of a local second gradient model: application to localization , 2002 .

[23]  L. J. Sluys,et al.  From continuous to discontinuous failure in a gradient-enhanced continuum damage model , 2003 .

[24]  R. Toupin Elastic materials with couple-stresses , 1962 .

[25]  E. Aifantis On the Microstructural Origin of Certain Inelastic Models , 1984 .

[26]  Milan Jirásek,et al.  Inelastic Analysis of Structures , 2001 .

[27]  M. Goldscheider,et al.  Formation of shear bands in sand bodies as a bifurcation problem , 1978 .

[28]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[29]  Ioannis Vardoulakis,et al.  Shear band inclination and shear modulus of sand in biaxial tests , 1980 .

[30]  Panagiotis Kotronis,et al.  Numerical modelling of the seismic behaviour of a 7-story building: NEES benchmark , 2009 .

[31]  Frédéric Feyel,et al.  A finite element approach coupling a continuous gradient damage model and a cohesive zone model within the framework of quasi-brittle failure , 2012 .

[32]  D. Caillerie,et al.  One-dimensional localisation studied with a second grade model , 1998 .

[33]  R. D. Mindlin Second gradient of strain and surface-tension in linear elasticity , 1965 .

[34]  Panagiotis Kotronis,et al.  Stratégies de Modélisation de Structures en Béton Soumises à des Chargements Sévères , 2008 .

[35]  Takashi Matsushima,et al.  Grain rotation versus continuum rotation during shear deformation of granular assembly , 2003 .

[36]  Gilles Pijaudier-Cabot,et al.  Boundary effect on weight function in nonlocal damage model , 2009 .

[37]  Zenon Mróz,et al.  Finite element analysis of deformation of strain‐softening materials , 1981 .

[38]  A. Simone,et al.  The use of displacement discontinuities in a rate-dependent medium , 2004 .

[39]  Roméo Fernandes,et al.  Modélisation numérique objective des problèmes couplés hydromécaniques dans le cas des géomatériaux. (Numerical modelling for geomaterials in hydromechanical coupled problems) , 2009 .

[40]  Rhj Ron Peerlings,et al.  Gradient enhanced damage for quasi-brittle materials , 1996 .

[41]  John W. Hutchinson,et al.  Bifurcation phenomena in the plane tension test , 1975 .

[42]  I. Vardoulakis,et al.  Bifurcation Analysis in Geomechanics , 1995 .

[43]  R. Chambon,et al.  Shear softening and localization: Modelling the evolution of the width of the shear zone , 2008 .

[44]  Stefano Mariani,et al.  An extended FE strategy for transition from continuum damage to mode I cohesive crack propagation , 2007 .

[45]  Panagiotis Kotronis,et al.  The effects of Soil-Structure Interaction on a reinforced concrete viaduct , 2011 .

[46]  René Chambon,et al.  Second gradient models as a particular case of microstructured models: a large strain finite elements analysis , 2000 .

[47]  A. Needleman Material rate dependence and mesh sensitivity in localization problems , 1988 .

[48]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[49]  J. Rice,et al.  CONDITIONS FOR THE LOCALIZATION OF DEFORMATION IN PRESSURE-SENSITIVE DILATANT MATERIALS , 1975 .

[50]  Z. Bažant,et al.  Nonlocal damage theory , 1987 .