Signals in the activation of opioid mu-receptors by loperamide to enhance glucose uptake into cultured C2C12 cells.

In an attempt to understand the signal pathways of opioid mu-receptors for glucose metabolism, we used loperamide to investigate the glucose uptake into the myoblast C2C12 cells. Loperamide enhanced the uptake of radioactive deoxyglucose into C2C12 cells in a concentration-dependent manner that was abolished in cells pre-incubated with naloxone or naloxonazine at concentrations sufficient to block opioid mu-receptors. Pharmacological inhibition of phospholipase C (PLC) by U73122 resulted in a concentration-dependent decrease in loperamide-stimulated uptake of radioactive deoxyglucose into C2C12 cells. This inhibition of glucose uptake by U73122 was specific since the inactive congener, U73343, failed to modify loperamide-stimulated glucose uptake. Moreover, both chelerythrine and GF 109203X diminished the action of loperamide at concentrations sufficient to inhibit protein kinase C (PKC). The obtained data suggest that an activation of opioid mu-receptors in C2C12 cells by loperamide may increase glucose uptake via the PLC-PKC pathway.