CLOP: Confident Local Optimization for Noisy Black-Box Parameter Tuning
暂无分享,去创建一个
[1] G. Box,et al. On the Experimental Attainment of Optimum Conditions , 1951 .
[2] J. Kiefer,et al. Stochastic Estimation of the Maximum of a Regression Function , 1952 .
[3] Arthur L. Samuel,et al. Some Studies in Machine Learning Using the Game of Checkers , 1967, IBM J. Res. Dev..
[4] C. D. Gelatt,et al. Optimization by Simulated Annealing , 1983, Science.
[5] Hung Chen. Lower Rate of Convergence for Locating a Maximum of a Function , 1988 .
[6] K. Chaloner. Bayesian design for estimating the turning point of a quadratic regression , 1989 .
[7] J. Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient approximation , 1992 .
[8] R. Agrawal. The Continuum-Armed Bandit Problem , 1995 .
[9] Gerald Tesauro,et al. Temporal difference learning and TD-Gammon , 1995, CACM.
[10] Marcos Salganicoff,et al. Active Exploration and Learning in real-Valued Spaces using Multi-Armed Bandit Allocation Indices , 1995, ICML.
[11] Donald R. Jones,et al. Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..
[12] Andrew W. Moore,et al. A Nonparametric Approach to Noisy and Costly Optimization , 2000, ICML.
[13] Andrew W. Moore,et al. Q2: memory-based active learning for optimizing noisy continuous functions , 1998, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).
[14] M. Locatelli. Simulated Annealing Algorithms for Continuous Global Optimization , 2002 .
[15] Gabriel A. Wainer,et al. Proceedings of the 2016 Winter Simulation Conference , 2016 .
[16] R. G. Ingalls,et al. PROCEEDINGS OF THE 2002 WINTER SIMULATION CONFERENCE , 2002 .
[17] N. Zheng,et al. Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models , 2006, J. Glob. Optim..
[18] Michael C. Ferris,et al. Adaptation of the Uobyqa Algorithm for Noisy Functions , 2006, Proceedings of the 2006 Winter Simulation Conference.
[19] Csaba Szepesvári,et al. Universal parameter optimisation in games based on SPSA , 2006, Machine Learning.
[20] Csaba Szepesvári,et al. Bandit Based Monte-Carlo Planning , 2006, ECML.
[21] Neil D. Lawrence,et al. Missing Data in Kernel PCA , 2006, ECML.
[22] Rémi Munos,et al. Bandit Algorithms for Tree Search , 2007, UAI.
[23] Michael C. Ferris,et al. Extension of the direct optimization algorithm for noisy functions , 2007, 2007 Winter Simulation Conference.
[24] Hong Wan,et al. Stochastic trust region gradient-free method (strong) - a new response-surface-based algorithm in simulation optimization , 2007, 2007 Winter Simulation Conference.
[25] Clemens Elster,et al. A method of trust region type for minimizing noisy functions , 1997, Computing.
[26] Ellinor Fackle Fornius. Optimal Design of Experiments for the Quadratic Logistic Model , 2008 .
[27] Jürgen Branke,et al. Simulated annealing in the presence of noise , 2008, J. Heuristics.
[28] H. Jaap van den Herik,et al. Cross-Entropy for Monte-Carlo Tree Search , 2008, J. Int. Comput. Games Assoc..
[29] Petros Koumoutsakos,et al. A Method for Handling Uncertainty in Evolutionary Optimization With an Application to Feedback Control of Combustion , 2009, IEEE Transactions on Evolutionary Computation.
[30] Eric Walter,et al. An informational approach to the global optimization of expensive-to-evaluate functions , 2006, J. Glob. Optim..
[31] Ping Hu,et al. On the performance of the Cross-Entropy method , 2009, Proceedings of the 2009 Winter Simulation Conference (WSC).
[32] James C. Spall. Feedback and Weighting Mechanisms for Improving Jacobian Estimates in the Adaptive Simultaneous Perturbation Algorithm , 2009, IEEE Trans. Autom. Control..
[33] Eric Boesch. Minimizing the Mean of a Random Variable with One Real Parameter , 2010 .
[34] Thomas Bartz-Beielstein,et al. Sequential Model-Based Parameter Optimisation: an Experimental Investigation of Automated and Inte , 2010 .
[35] Douglas P. Wiens,et al. Author's Personal Copy Computational Statistics and Data Analysis Robustness of Design for the Testing of Lack of Fit and for Estimation in Binary Response Models , 2022 .