Optical and SAR Remote Sensing Synergism for Mapping Vegetation Types in the Endangered Cerrado/Amazon Ecotone of Nova Mutum - Mato Grosso

Mapping vegetation types through remote sensing images has proved to be effective, especially in large biomes, such as the Brazilian Cerrado, which plays an important role in the context of management and conservation at the agricultural frontier of the Amazon. We tested several combinations of optical and radar images to identify the four dominant vegetation types that are prevalent in the Cerrado area (i.e., cerrado denso, cerradão, gallery forest, and secondary forest). We extracted features from both sources of data such as intensity, grey level co-occurrence matrix, coherence, and polarimetric decompositions using Sentinel 2A, Sentinel 1A, ALOS-PALSAR 2 dual/full polarimetric, and TanDEM-X images during the dry and rainy season of 2017. In order to normalize the analysis of these features, we used principal component analysis and subsequently applied the Random Forest algorithm to evaluate the classification of vegetation types. During the dry season, the overall accuracy ranged from 48 to 83%, and during the dry and rainy seasons it ranged from 41 up to 82%. The classification using Sentinel 2A images during the dry season resulted in the highest overall accuracy and kappa values, followed by the classification that used images from all sensors during the dry and rainy season. Optical images during the dry season were sufficient to map the different types of vegetation in our study area.

[1]  Edson Eyji Sano,et al.  Assessing JERS-1 Synthetic Aperture Radar Data for Vegetation Mapping in the Brazilian Savanna. , 2001 .

[2]  W. Mantovani,et al.  Identificacao de fisionomias de cerrado com imagem indice de vegetacao , 1996 .

[3]  G. Asner,et al.  Cloud cover in Landsat observations of the Brazilian Amazon , 2001 .

[4]  F. Sabins,et al.  Remote sensing for mineral exploration , 1999 .

[5]  Ciro Abbud Righi,et al.  Biomass and greenhouse-gas emissions from land-use change in Brazil's Amazonian “arc of deforestation”: The states of Mato Grosso and Rondônia , 2009 .

[6]  Leila Maria Garcia Fonseca,et al.  Assessment of texture features for Brazilian savanna classification: a case study in Brasilia National Park , 2017, GEOINFO.

[7]  Gerhard Krieger,et al.  TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[8]  E. E. Sano,et al.  Identificação de Cerrado Rupestre por Meio de Imagens Multitemporais do Landsat: Proposta Metodológica / Identifi cation of Rupestrian Cerrado using multitemporal Landsat images: methodological approach , 2010 .

[9]  Claire Marais-Sicre,et al.  Improved Early Crop Type Identification By Joint Use of High Temporal Resolution SAR And Optical Image Time Series , 2016, Remote. Sens..

[10]  P. Hostert,et al.  Mining dense Landsat time series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape , 2015 .

[11]  Edward T. A. Mitchard,et al.  Extending the baseline of tropical dry forest loss in Ghana (1984–2015) reveals drivers of major deforestation inside a protected area , 2018 .

[12]  Thuy Le Toan,et al.  Forest Biophysical Parameter Estimation Using L- and P-Band Polarimetric SAR Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Sassan Saatchi,et al.  Sensitivity of L-Band SAR Backscatter to Aboveground Biomass of Global Forests , 2016, Remote. Sens..

[14]  A. K. Milne,et al.  The potential of synthetic aperture radar (SAR) for quantifying the biomass of Australia's woodlands. , 2000 .

[15]  E. E. Sano,et al.  IDENTIFICAÇÃO DA FLORESTA ESTACIONAL DECIDUAL NO VÃO DO PARANÃ, ESTADO DE GOIÁS, A PARTIR DA ANÁLISE DA REFLECTÂNCIA ACUMULADA DE IMAGENS DO SENSOR ETM+/LANDSAT-7 , 2012 .

[16]  Daniel Alves Aguiar,et al.  Remote Sensing Images to Detect Soy Plantations in the Amazon Biome – the Soy Moratorium Initiative , 2012 .

[17]  Evlyn Márcia Leão de Moraes Novo,et al.  Dual-season and full-polarimetric C band SAR assessment for vegetation mapping in the Amazon várzea wetlands. , 2016 .

[18]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[19]  G. Colli,et al.  Redefining the Cerrado–Amazonia transition: implications for conservation , 2019, Biodiversity and Conservation.

[20]  Yosio Edemir Shimabukuro,et al.  Detecting areas disturbed by gold mining activities through JERS-1 SAR images, Roraima State, Brazilian Amazon , 2000 .

[21]  P. Fearnside Deforestation in Brazilian Amazonia: History, Rates, and Consequences , 2005 .

[22]  Carlos A. Klink,et al.  A conservação do Cerrado brasileiro , 2005 .

[23]  C. Schmullius,et al.  Importance of bistatic SAR features from TanDEM-X for forest mapping and monitoring , 2014 .

[24]  S. Saatchi,et al.  Mapping land cover types in the Amazon Basin using 1 km JERS-1 mosaic , 2000 .

[25]  Marcos Daisuke Oyama,et al.  The climatic sensitivity of the forest, savanna and forest-savanna transition in tropical South America. , 2010, The New phytologist.

[26]  A. Huete,et al.  Synthetic Aperture Radar (L band) and Optical Vegetation Indices for Discriminating the Brazilian Savanna Physiognomies: A Comparative Analysis , 2005 .

[27]  Giles M. Foody,et al.  Good practices for estimating area and assessing accuracy of land change , 2014 .

[28]  L. Aragão,et al.  Deforestation-Induced Fragmentation Increases Forest Fire Occurrence in Central Brazilian Amazonia , 2018, Forests.

[29]  Patrick Hostert,et al.  Mapping Brazilian savanna vegetation gradients with Landsat time series , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[30]  Sidnei J. S. Sant'Anna,et al.  Multifrequency and Full-Polarimetric SAR Assessment for Estimating Above Ground Biomass and Leaf Area Index in the Amazon Várzea Wetlands , 2018, Remote. Sens..

[31]  Philip M. Fearnside,et al.  Wood density in forests of Brazil's 'arc of deforestation': Implications for biomass and flux of carbon from land-use change in Amazonia , 2007 .

[32]  Stefan Erasmi,et al.  High Resolution Forest Maps from Interferometric TanDEM-X and Multitemporal Sentinel-1 SAR Data , 2017, PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science.

[33]  Maycira Costa,et al.  Landcover classification of the Lower Nhecolândia subregion of the Brazilian Pantanal Wetlands using ALOS/PALSAR, RADARSAT-2 and ENVISAT/ASAR imagery , 2013 .

[34]  Ute Bradter,et al.  Prediction of National Vegetation Classification communities in the British uplands using environmental data at multiple spatial scales, aerial images and the classifier random forest , 2011 .

[35]  Daniel Mauricio,et al.  Sinopsis taxonómica de las moscas parasitoides (Diptera: Tachinidae) de Colombia , 2020 .

[36]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[37]  V. Liesenberg,et al.  Variations in reflectance with seasonality and viewing geometry: Implications for classification of Brazilian savanna physiognomies with MISR/Terra data , 2007 .

[38]  Francesco De Zan,et al.  Coregistration of Interferometric Stacks of Sentinel-1 TOPS Data , 2016, IEEE Geoscience and Remote Sensing Letters.

[39]  Stuart Green,et al.  Upland vegetation mapping using Random Forests with optical and radar satellite data , 2016, Remote sensing in ecology and conservation.

[40]  L. Ferreira,et al.  Spectral linear mixture modelling approaches for land cover mapping of tropical savanna areas in Brazil , 2007 .

[41]  Maurizio Santoro,et al.  Signatures of ALOS PALSAR L-Band Backscatter in Swedish Forest , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[42]  B. Soares-Filho,et al.  Cracking Brazil's Forest Code , 2014, Science.

[43]  R. DeFries,et al.  Decoupling of deforestation and soy production in the southern Amazon during the late 2000s , 2012, Proceedings of the National Academy of Sciences.

[44]  David Small,et al.  Flattening Gamma: Radiometric Terrain Correction for SAR Imagery , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[45]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[46]  Edson E. Sano,et al.  Land cover mapping of the tropical savanna region in Brazil , 2010, Environmental monitoring and assessment.

[47]  R. Mittermeier,et al.  Biodiversity hotspots for conservation priorities , 2000, Nature.

[48]  Cardona Alzate,et al.  Predicción y selección de variables con bosques aleatorios en presencia de variables correlacionadas , 2020 .

[49]  G. Asner,et al.  Spatial and temporal probabilities of obtaining cloud‐free Landsat images over the Brazilian tropical savanna , 2007 .

[50]  Navin Ramankutty,et al.  People on the Land: Changes in Global Population and Croplands during the 20th Century , 2002, Ambio.

[51]  H. D. da Rocha,et al.  Cerrado vegetation study using optical and radar remote sensing: two Brazilian case studies , 2007 .

[52]  Cornélio Alberto Zolin,et al.  Agricultural land use and cover change in the Cerrado/Amazon ecotone: A case study of the upper Teles Pires River basin , 2018 .

[53]  R. Bamler,et al.  Synthetic aperture radar interferometry , 1998 .

[54]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .