Optical and SAR Remote Sensing Synergism for Mapping Vegetation Types in the Endangered Cerrado/Amazon Ecotone of Nova Mutum - Mato Grosso
暂无分享,去创建一个
Stefan Erasmi | Veraldo Liesenberg | Daniel Baron | Gerhard Gerold | Flávia de Souza Mendes | S. Erasmi | V. Liesenberg | G. Gerold | Daniel Baron | Daniel Baron | Flávia de Souza Mendes | F. S. Mendes
[1] Edson Eyji Sano,et al. Assessing JERS-1 Synthetic Aperture Radar Data for Vegetation Mapping in the Brazilian Savanna. , 2001 .
[2] W. Mantovani,et al. Identificacao de fisionomias de cerrado com imagem indice de vegetacao , 1996 .
[3] G. Asner,et al. Cloud cover in Landsat observations of the Brazilian Amazon , 2001 .
[4] F. Sabins,et al. Remote sensing for mineral exploration , 1999 .
[5] Ciro Abbud Righi,et al. Biomass and greenhouse-gas emissions from land-use change in Brazil's Amazonian “arc of deforestation”: The states of Mato Grosso and Rondônia , 2009 .
[6] Leila Maria Garcia Fonseca,et al. Assessment of texture features for Brazilian savanna classification: a case study in Brasilia National Park , 2017, GEOINFO.
[7] Gerhard Krieger,et al. TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry , 2006, IEEE Transactions on Geoscience and Remote Sensing.
[8] E. E. Sano,et al. Identificação de Cerrado Rupestre por Meio de Imagens Multitemporais do Landsat: Proposta Metodológica / Identifi cation of Rupestrian Cerrado using multitemporal Landsat images: methodological approach , 2010 .
[9] Claire Marais-Sicre,et al. Improved Early Crop Type Identification By Joint Use of High Temporal Resolution SAR And Optical Image Time Series , 2016, Remote. Sens..
[10] P. Hostert,et al. Mining dense Landsat time series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape , 2015 .
[11] Edward T. A. Mitchard,et al. Extending the baseline of tropical dry forest loss in Ghana (1984–2015) reveals drivers of major deforestation inside a protected area , 2018 .
[12] Thuy Le Toan,et al. Forest Biophysical Parameter Estimation Using L- and P-Band Polarimetric SAR Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.
[13] Sassan Saatchi,et al. Sensitivity of L-Band SAR Backscatter to Aboveground Biomass of Global Forests , 2016, Remote. Sens..
[14] A. K. Milne,et al. The potential of synthetic aperture radar (SAR) for quantifying the biomass of Australia's woodlands. , 2000 .
[15] E. E. Sano,et al. IDENTIFICAÇÃO DA FLORESTA ESTACIONAL DECIDUAL NO VÃO DO PARANÃ, ESTADO DE GOIÁS, A PARTIR DA ANÁLISE DA REFLECTÂNCIA ACUMULADA DE IMAGENS DO SENSOR ETM+/LANDSAT-7 , 2012 .
[16] Daniel Alves Aguiar,et al. Remote Sensing Images to Detect Soy Plantations in the Amazon Biome – the Soy Moratorium Initiative , 2012 .
[17] Evlyn Márcia Leão de Moraes Novo,et al. Dual-season and full-polarimetric C band SAR assessment for vegetation mapping in the Amazon várzea wetlands. , 2016 .
[18] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[19] G. Colli,et al. Redefining the Cerrado–Amazonia transition: implications for conservation , 2019, Biodiversity and Conservation.
[20] Yosio Edemir Shimabukuro,et al. Detecting areas disturbed by gold mining activities through JERS-1 SAR images, Roraima State, Brazilian Amazon , 2000 .
[21] P. Fearnside. Deforestation in Brazilian Amazonia: History, Rates, and Consequences , 2005 .
[22] Carlos A. Klink,et al. A conservação do Cerrado brasileiro , 2005 .
[23] C. Schmullius,et al. Importance of bistatic SAR features from TanDEM-X for forest mapping and monitoring , 2014 .
[24] S. Saatchi,et al. Mapping land cover types in the Amazon Basin using 1 km JERS-1 mosaic , 2000 .
[25] Marcos Daisuke Oyama,et al. The climatic sensitivity of the forest, savanna and forest-savanna transition in tropical South America. , 2010, The New phytologist.
[26] A. Huete,et al. Synthetic Aperture Radar (L band) and Optical Vegetation Indices for Discriminating the Brazilian Savanna Physiognomies: A Comparative Analysis , 2005 .
[27] Giles M. Foody,et al. Good practices for estimating area and assessing accuracy of land change , 2014 .
[28] L. Aragão,et al. Deforestation-Induced Fragmentation Increases Forest Fire Occurrence in Central Brazilian Amazonia , 2018, Forests.
[29] Patrick Hostert,et al. Mapping Brazilian savanna vegetation gradients with Landsat time series , 2016, Int. J. Appl. Earth Obs. Geoinformation.
[30] Sidnei J. S. Sant'Anna,et al. Multifrequency and Full-Polarimetric SAR Assessment for Estimating Above Ground Biomass and Leaf Area Index in the Amazon Várzea Wetlands , 2018, Remote. Sens..
[31] Philip M. Fearnside,et al. Wood density in forests of Brazil's 'arc of deforestation': Implications for biomass and flux of carbon from land-use change in Amazonia , 2007 .
[32] Stefan Erasmi,et al. High Resolution Forest Maps from Interferometric TanDEM-X and Multitemporal Sentinel-1 SAR Data , 2017, PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science.
[33] Maycira Costa,et al. Landcover classification of the Lower Nhecolândia subregion of the Brazilian Pantanal Wetlands using ALOS/PALSAR, RADARSAT-2 and ENVISAT/ASAR imagery , 2013 .
[34] Ute Bradter,et al. Prediction of National Vegetation Classification communities in the British uplands using environmental data at multiple spatial scales, aerial images and the classifier random forest , 2011 .
[35] Daniel Mauricio,et al. Sinopsis taxonómica de las moscas parasitoides (Diptera: Tachinidae) de Colombia , 2020 .
[36] Robert M. Haralick,et al. Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..
[37] V. Liesenberg,et al. Variations in reflectance with seasonality and viewing geometry: Implications for classification of Brazilian savanna physiognomies with MISR/Terra data , 2007 .
[38] Francesco De Zan,et al. Coregistration of Interferometric Stacks of Sentinel-1 TOPS Data , 2016, IEEE Geoscience and Remote Sensing Letters.
[39] Stuart Green,et al. Upland vegetation mapping using Random Forests with optical and radar satellite data , 2016, Remote sensing in ecology and conservation.
[40] L. Ferreira,et al. Spectral linear mixture modelling approaches for land cover mapping of tropical savanna areas in Brazil , 2007 .
[41] Maurizio Santoro,et al. Signatures of ALOS PALSAR L-Band Backscatter in Swedish Forest , 2009, IEEE Transactions on Geoscience and Remote Sensing.
[42] B. Soares-Filho,et al. Cracking Brazil's Forest Code , 2014, Science.
[43] R. DeFries,et al. Decoupling of deforestation and soy production in the southern Amazon during the late 2000s , 2012, Proceedings of the National Academy of Sciences.
[44] David Small,et al. Flattening Gamma: Radiometric Terrain Correction for SAR Imagery , 2011, IEEE Transactions on Geoscience and Remote Sensing.
[45] Eric Pottier,et al. A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..
[46] Edson E. Sano,et al. Land cover mapping of the tropical savanna region in Brazil , 2010, Environmental monitoring and assessment.
[47] R. Mittermeier,et al. Biodiversity hotspots for conservation priorities , 2000, Nature.
[48] Cardona Alzate,et al. Predicción y selección de variables con bosques aleatorios en presencia de variables correlacionadas , 2020 .
[49] G. Asner,et al. Spatial and temporal probabilities of obtaining cloud‐free Landsat images over the Brazilian tropical savanna , 2007 .
[50] Navin Ramankutty,et al. People on the Land: Changes in Global Population and Croplands during the 20th Century , 2002, Ambio.
[51] H. D. da Rocha,et al. Cerrado vegetation study using optical and radar remote sensing: two Brazilian case studies , 2007 .
[52] Cornélio Alberto Zolin,et al. Agricultural land use and cover change in the Cerrado/Amazon ecotone: A case study of the upper Teles Pires River basin , 2018 .
[53] R. Bamler,et al. Synthetic aperture radar interferometry , 1998 .
[54] Russell G. Congalton,et al. A review of assessing the accuracy of classifications of remotely sensed data , 1991 .