Two-Grid Methods for Hermitian positive definite linear systems connected with an order relation

Given a multigrid procedure for linear systems with coefficient matrices $$A_n,$$ we discuss the optimality of a related multigrid procedure with the same smoother and the same projector, when applied to properly related algebraic problems with coefficient matrices $$B_n$$: we assume that both $$A_n$$ and $$B_n$$ are Hermitian positive definite with $$A_n\le \vartheta B_n,$$ for some positive $$\vartheta $$ independent of $$n.$$ In this context we prove the Two-Grid Method optimality. We apply this elementary strategy for designing a multigrid solution for modifications of multilevel structured linear systems, in which the Hermitian positive definite coefficient matrix is banded in a multilevel sense. As structured matrices, Toeplitz, circulants, Hartley, sine ($$\tau $$ class) and cosine algebras are considered. In such a way, several linear systems arising from the approximation of integro–differential equations with various boundary conditions can be efficiently solved in linear time (with respect to the size of the algebraic problem). Some numerical experiments are presented and discussed, both with respect to Two-Grid and multigrid procedures.

[1]  Stefano Serra Capizzano,et al.  Multigrid Methods for Symmetric Positive Definite Block Toeplitz Matrices with Nonnegative Generating Functions , 1996, SIAM J. Sci. Comput..

[2]  S. Serra,et al.  Multi-iterative methods , 1993 .

[3]  R. Bhatia Matrix Analysis , 1996 .

[4]  Gene H. Golub,et al.  Preconditioned HSS methods for the solution of non-Hermitian positive definite linear systems and applications to the discrete convection-diffusion equation , 2005, Numerische Mathematik.

[5]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[6]  Thomas Huckle,et al.  Multigrid Preconditioning and Toeplitz Matrices , 2002 .

[7]  A Proposal of Multigrid Methods for Hermitian Positive Definite Linear Systems enjoying an order relation , 2008, 0804.3016.

[8]  Raymond H. Chan,et al.  Multigrid Method for Ill-Conditioned Symmetric Toeplitz Systems , 1998, SIAM J. Sci. Comput..

[9]  Ludmil T. Zikatanov,et al.  On two‐grid convergence estimates , 2005, Numer. Linear Algebra Appl..

[10]  Michael K. Ng,et al.  Numerical behaviour of multigrid methods for symmetric Sinc–Galerkin systems , 2005, Numer. Linear Algebra Appl..

[11]  Stefano Serra Capizzano,et al.  V-cycle Optimal Convergence for Certain (Multilevel) Structured Linear Systems , 2004, SIAM J. Matrix Anal. Appl..

[12]  C. Tablino Possio,et al.  V-cycle Optimal Convergence for DCT-III Matrices , 2007, 0704.1980.

[13]  Stefano Serra Capizzano,et al.  Two‐grid methods for banded linear systems from DCT III algebra , 2005, Numer. Linear Algebra Appl..

[14]  Raymond H. Chan,et al.  Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..

[15]  Eugene E. Tyrtyshnikov,et al.  Circulant preconditioners with unbounded inverses , 1995 .

[16]  Xiao-Qing Jin,et al.  Convergence of the Multigrid Method of Ill-conditioned Block Toeplitz Systems , 2001 .

[17]  M. Ng,et al.  Cosine transform preconditioners for high resolution image reconstruction , 2000 .

[18]  H. Dym,et al.  Operator theory: Advances and applications , 1991 .

[19]  Kenneth L. Bowers,et al.  Sinc methods for quadrature and differential equations , 1987 .

[20]  O. Axelsson Iterative solution methods , 1995 .

[21]  Rudolf A. Römer,et al.  The Anderson Model of Localization: A Challenge for Modern Eigenvalue Methods , 1999, SIAM J. Sci. Comput..

[22]  Stefano Serra-Capizzano,et al.  Multigrid Methods for Multilevel Circulant Matrices , 2005 .

[23]  Michael K. Ng,et al.  Splitting iterations for circulant‐plus‐diagonal systems , 2005, Numer. Linear Algebra Appl..

[24]  Raymond H. Chan,et al.  A Fast Algorithm for Deblurring Models with Neumann Boundary Conditions , 1999, SIAM J. Sci. Comput..

[25]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[26]  Stefano Serra,et al.  Multigrid methods for toeplitz matrices , 1991 .

[27]  Dario Bini,et al.  SPECTRAL AND COMPUTATIONAL PROPERTIES OF BAND SYMMETRIC TOEPLITZ MATRICES , 1983 .

[28]  S. Serra-Capizzano,et al.  A Note on Antireflective Boundary Conditions and Fast Deblurring Models , 2003, SIAM J. Sci. Comput..

[29]  Marco Donatelli,et al.  A V-cycle Multigrid for multilevel matrix algebras: proof of optimality , 2007, Numerische Mathematik.

[30]  Stefano Serra Capizzano,et al.  Matrix algebra preconditioners for multilevel Toeplitz systems do not insure optimal convergence rate , 2004, Theor. Comput. Sci..

[31]  Stefano Serra Capizzano,et al.  Numerische Mathematik Convergence analysis of two-grid methods for elliptic Toeplitz and PDEs Matrix-sequences , 2002 .

[32]  Stefano Serra Capizzano,et al.  A note on algebraic multigrid methods for the discrete weighted Laplacian , 2008, Comput. Math. Appl..