The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering

We have investigated the effects of tuning the localized surface plasmon resonance (LSPR) of a silver film on the extinction spectrum, Raman signal, and fluorescence intensity from nearby fluorophores. We observe the formation of hybridized modes due to strong coupling between the plasmonic and molecular excitations. The Raman spectra of R6G on these films show an enhancement of many orders of magnitude due to surface enhanced scattering mechanisms; we find a maximum signal when a hybridized mode lies in the middle of the Stokes shifted emission band. The effect of fluorophore-film separation on fluorescence intensity has been investigated using an alumina spacer layer. An enhancement in detected signal of up to 18× is observed relative to that detected from a bare Ag film. Overall, we observe a greater than 40× increase in detected intensity from the alumina-coated Ag film relative to fluorophores on glass; this is a result of increased collection efficiency and a greater radiative emission rate.

[1]  Peter A. Hobson,et al.  Strong exciton–photon coupling in a low-Q all-metal mirror microcavity , 2002 .

[2]  M. Moskovits Surface‐enhanced Raman spectroscopy: a brief retrospective , 2005 .

[3]  R. Dasari,et al.  Prospects for in vivo Raman spectroscopy , 2000 .

[4]  C. D. Geddes,et al.  Metal-enhanced fluorescence: Surface plasmons can radiate a fluorophore’s structured emission , 2007 .

[5]  Vladimir M. Shalaev,et al.  EXPERIMENTAL OBSERVATION OF LOCALIZED OPTICAL EXCITATIONS IN RANDOM METAL-DIELECTRIC FILMS , 1999 .

[6]  S. Hackbarth,et al.  Photophysical properties of pheophorbide a in solution and in model membrane systems , 2000 .

[7]  W. Barnes,et al.  Fluorescence near interfaces: The role of photonic mode density , 1998 .

[8]  Vahid Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[9]  R. Dasari,et al.  Surface-enhanced Raman scattering and biophysics , 2001 .

[10]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[11]  Ulrich Hohenester,et al.  Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures , 2007 .

[12]  Haruka Yamada,et al.  Surface resonance Raman spectra of dyes absorbed on metals , 1986 .

[13]  B. Röder,et al.  Photophysics on surfaces: Absorption and luminescence properties of Pheophorbide-a on cellulose , 2001 .

[14]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[15]  F. Träger,et al.  Application of metal nanoparticles in confocal laser scanning microscopy: improved resolution by optical field enhancement , 2003, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[16]  L. Liz‐Marzán,et al.  Mapping surface plasmons on a single metallic nanoparticle , 2007 .

[17]  J. Baumberg,et al.  Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering applications. , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[18]  D. Richards,et al.  Spatial imaging of modifications to fluorescence lifetime and intensity by individual Ag nanoparticles , 2007, 0707.1680.

[19]  B. MacCraith,et al.  Optimization of Nanoparticle Size for Plasmonic Enhancement of Fluorescence , 2007 .

[20]  O. Muskens,et al.  Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas. , 2007, Nano letters.

[21]  G. L. Liu,et al.  Spectral tuning of localised surface plasmon-polariton resonance in metallic nano-crescents. , 2006, IEE proceedings. Nanobiotechnology.

[22]  N J Halas,et al.  Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[23]  D A Weitz,et al.  Optical absorption resonances of dye-coated silver-island films. , 1981, Optics letters.

[24]  C. Noguez Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment , 2007 .

[25]  Joseph R Lakowicz,et al.  Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. , 2005, Analytical biochemistry.

[26]  J. Steinfeld,et al.  Aggregation of equilibriums of xanthene dyes , 1972 .

[27]  D. A. Stuart,et al.  Biological applications of localised surface plasmonic phenomenae. , 2005, IEE proceedings. Nanobiotechnology.

[28]  C. Mirkin,et al.  Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. , 2006, Nano letters.

[29]  W. A. Murray,et al.  Overlayers on silver nanotriangles: Field confinement and spectral position of localized surface plasmon resonances. , 2006, Nano letters.

[30]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[31]  D. A. Stuart,et al.  Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography. , 2005, IEE proceedings. Nanobiotechnology.

[32]  C. Mirkin,et al.  Controlling anisotropic nanoparticle growth through plasmon excitation , 2003, Nature.

[33]  David R. Smith,et al.  Shape effects in plasmon resonance of individual colloidal silver nanoparticles , 2002 .

[34]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[35]  William L. Barnes,et al.  Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays , 2005 .

[36]  D. Reinhoudt,et al.  Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. , 2002, Physical review letters.

[37]  Franz R. Aussenegg,et al.  Optimized surface-enhanced Raman scattering on gold nanoparticle arrays , 2003 .

[38]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[39]  C. Haynes,et al.  Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics , 2001 .

[40]  Marie-Pierre Fontaine-Aupart,et al.  Enhanced Fluorescence Cell Imaging with Metal-Coated Slides , 2007 .

[41]  C. Noguez,et al.  Optical properties of silver nanoparticles , 2007 .