Modelling ion diffusion mechanisms in porous media
暂无分享,去创建一个
E. Samson | J. Marchand | J. Marchand | J.-P. Bournazel | J.-L. Robert | J. Robert | É. Samson | J. Bournazel
[1] D. E. Goldman. POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES , 1943, The Journal of general physiology.
[2] A. Macgillivray,et al. Nernst‐Planck Equations and the Electroneutrality and Donnan Equilibrium Assumptions , 1968 .
[3] Olivier Coussy,et al. A macroscopic model of the swelling phenomenon of a saturated clay , 1995 .
[4] Tarsten Teorell,et al. Transport Processes and Electrical Phenomena in Ionic Membranes , 1953 .
[5] F. Conti,et al. THE NON-STEADY STATE MEMBRANE POTENTIAL OF ION EXCHANGERS WITH FIXED SITES. , 1965, Biophysical journal.
[6] R. Schlögl. Elektrodiffusion in freier Lösung und geladenen Membranen. , 1954 .
[7] J. Harden,et al. Numerical studies of pulsed iontophoresis through model membranes , 1996 .
[8] Masayuki Kato. Numerical analysis of the Nernst-Planck-Poisson system , 1995 .
[9] Samson,et al. Numerical Solution of the Extended Nernst-Planck Model. , 1999, Journal of colloid and interface science.
[10] J. Reddy,et al. The Finite Element Method in Heat Transfer and Fluid Dynamics , 1994 .
[11] M. Planck,et al. Ueber die Potentialdifferenz zwischen zwei verdünnten Lösungen binärer Electrolyte , 1890 .
[12] G. Pátzay. A simplified numerical solution method for the Nernst-Planck multicomponent ion exchange kinetics model , 1995 .
[13] A. Macgillivray,et al. Applicability of Goldman's constant field assumption to biological systems. , 1969, Journal of theoretical biology.
[14] J. Cooley,et al. THE NUMERICAL SOLUTION OF THE TIME-DEPENDENT NERNST-PLANCK EQUATIONS. , 1965, Biophysical journal.
[15] Howard W. Reeves,et al. Multicomponent mass transport with homogeneous and heterogeneous chemical reactions: Effect of the chemistry on the choice of numerical algorithm: 1. Theory , 1988 .
[16] J. Bear,et al. Introduction to Modeling of Transport Phenomena in Porous Media , 1990 .