Modelling ion diffusion mechanisms in porous media

The main features of a numerical model aiming at predicting the drift of ions in electrolytic solutions are presented. The mechanisms of ionic diffusion are described by solving the Nernst–Planck system of equations. The electrical coupling between the various ionic fluxes is accounted for by the Poisson equation. Two algorithms using the finite element method for spatial discretization are compared for simple test cases. One is based on the Picard iteration method while the other is based on the Newton–Raphson scheme. Test results clearly indicate that the range of application is broader for the algorithm based on the Newton–Raphson method. Selected examples of the application of the algorithm to more complex 1-D and 2-D cases are given. Copyright © 1999 John Wiley & Sons, Ltd.

[1]  D. E. Goldman POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES , 1943, The Journal of general physiology.

[2]  A. Macgillivray,et al.  Nernst‐Planck Equations and the Electroneutrality and Donnan Equilibrium Assumptions , 1968 .

[3]  Olivier Coussy,et al.  A macroscopic model of the swelling phenomenon of a saturated clay , 1995 .

[4]  Tarsten Teorell,et al.  Transport Processes and Electrical Phenomena in Ionic Membranes , 1953 .

[5]  F. Conti,et al.  THE NON-STEADY STATE MEMBRANE POTENTIAL OF ION EXCHANGERS WITH FIXED SITES. , 1965, Biophysical journal.

[6]  R. Schlögl Elektrodiffusion in freier Lösung und geladenen Membranen. , 1954 .

[7]  J. Harden,et al.  Numerical studies of pulsed iontophoresis through model membranes , 1996 .

[8]  Masayuki Kato Numerical analysis of the Nernst-Planck-Poisson system , 1995 .

[9]  Samson,et al.  Numerical Solution of the Extended Nernst-Planck Model. , 1999, Journal of colloid and interface science.

[10]  J. Reddy,et al.  The Finite Element Method in Heat Transfer and Fluid Dynamics , 1994 .

[11]  M. Planck,et al.  Ueber die Potentialdifferenz zwischen zwei verdünnten Lösungen binärer Electrolyte , 1890 .

[12]  G. Pátzay A simplified numerical solution method for the Nernst-Planck multicomponent ion exchange kinetics model , 1995 .

[13]  A. Macgillivray,et al.  Applicability of Goldman's constant field assumption to biological systems. , 1969, Journal of theoretical biology.

[14]  J. Cooley,et al.  THE NUMERICAL SOLUTION OF THE TIME-DEPENDENT NERNST-PLANCK EQUATIONS. , 1965, Biophysical journal.

[15]  Howard W. Reeves,et al.  Multicomponent mass transport with homogeneous and heterogeneous chemical reactions: Effect of the chemistry on the choice of numerical algorithm: 1. Theory , 1988 .

[16]  J. Bear,et al.  Introduction to Modeling of Transport Phenomena in Porous Media , 1990 .