Some old and new problems in combinatorial geometry I: around Borsuk's problem
暂无分享,去创建一个
[1] Günter M. Ziegler. Coloring Hamming Graphs, Optimal Binary Codes, and the 0/1-Borsuk Problem in Low Dimensions , 2001, Computational Discrete Mathematics.
[2] János Pach,et al. Research problems in discrete geometry , 2005 .
[3] A M Raigorodskii. On the dimension in Borsuk's problem , 1997 .
[4] K. Swanepoel. Equilateral sets in finite-dimensional normed spaces , 2004, math/0406264.
[5] Jeff Kahn,et al. Coloring Nearly-Disjoint Hypergraphs with n+o(n) Colors , 1992, J. Comb. Theory, Ser. A.
[6] J. Kahn,et al. A counterexample to Borsuk's conjecture , 1993, math/9307229.
[7] Andrey Kupavskiy,et al. On the chromatic number of Rn with an arbitrary norm , 2011, Discret. Math..
[8] Vladimir Dol'nikov. Some Properties of Graphs of Diameters , 2000, Discret. Comput. Geom..
[9] Alexandr Polyanskii,et al. Proof of Schur's conjecture in $\mathbb R^d$ , 2014 .
[10] Noga Alon. Packings with large minimum kissing numbers , 1997, Discret. Math..
[11] Zsolt Lángi,et al. On the multiple Borsuk numbers of sets , 2012, 1206.0892.
[12] J. Bourgain,et al. On convering a set in R N by balls of the same diameter , 1991 .
[13] H. Eggleston. Covering a Three‐Dimensional set with Sets of Smaller Diameter , 1955 .
[14] Aaas News,et al. Book Reviews , 1893, Buffalo Medical and Surgical Journal.
[15] Oded Schramm,et al. On the volume of sets having constant width , 1988 .
[16] D. R. WQODALL. Distances Realized by Sets Covering the Plane* , 2003 .
[17] Karol Borsuk. Drei Sätze über die n-dimensionale euklidische Sphäre , 1933 .
[18] Andrei Mikhailovich Raigorodskii,et al. New lower bounds for the independence numbers of distance graphs with vertices in {−1, 0, 1}n , 2011 .
[19] Andrei Mikhailovich Raigorodskii. On a bound in Borsuk's problem , 1999 .
[20] B. V. Dekster. The Borsuk conjecture holds for convex bodies with a belt of regular points , 1993 .
[21] V. V. Bulankina,et al. On Schur’s conjecture in ℝ4 , 2014 .
[22] Jeff Kahn,et al. A Problem of Füredi and Seymour on Covering Intersecting Families by Pairs , 1994, J. Comb. Theory, Ser. A.
[23] Nicholas C. Wormald,et al. Bounds on the measurable chromatic number of Rn , 1989, Discret. Math..
[24] P. Delsarte. AN ALGEBRAIC APPROACH TO THE ASSOCIATION SCHEMES OF CODING THEORY , 2011 .
[25] Alexander Barg,et al. Linear Codes with Exponentially Many Light Vectors , 2001, J. Comb. Theory A.
[26] J. Kahn. Asymptotics of Hypergraph Matching, Covering and Coloring Problems , 1995 .
[27] N. Wormald. A 4-chromatic graph with a special plane drawing , 1979 .
[28] A. Raigorodskii. Coloring Distance Graphs and Graphs of Diameters , 2013 .
[29] Dominique de Caen,et al. Large Equiangular Sets of Lines in Euclidean Space , 2000, Electron. J. Comb..
[30] H. Hadwiger,et al. Ein ?berdeckungssätze für den Euklidischen Raum , 1944 .
[31] Márton Naszódi,et al. Rigidity of ball-polyhedra in Euclidean 3-space , 2006, Eur. J. Comb..
[32] Jacob Steinhardt,et al. On Coloring the Odd-Distance Graph , 2009, Electron. J. Comb..
[33] B. Aronov,et al. Discrete and computational geometry : the Goodman-Pollack Festschrift , 2003 .
[34] Noga Alon,et al. Equilateral sets in l np , 2002 .
[35] F. Thorne,et al. Geometry of Numbers , 2017, Algebraic Number Theory.
[36] Fernando Mário Oliveira Filho,et al. Lower Bounds for Measurable Chromatic Numbers , 2008, 0801.1059.
[37] Philip D. Plowright,et al. Convexity , 2019, Optimization for Chemical and Biochemical Engineering.
[38] H. Busemann,et al. Intrinsic Area. , 1946, Proceedings of the National Academy of Sciences of the United States of America.
[39] Peter Frankl,et al. Intersection theorems with geometric consequences , 1981, Comb..
[40] N. Alon,et al. Equilateral Sets in lpn , 2003 .
[41] B. Grünbaum. A simple proof of Borsuk's conjecture in three dimensions , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.
[42] P. Révész,et al. Zum Borsukschen Zerteilungsproblem , 1956 .
[43] Rom Pinchasi,et al. Gallai—Sylvester Theorem for Pairwise Intersecting Unit Circles , 2002, Discret. Comput. Geom..
[44] Aicke Hinrichs. Spherical codes and Borsuk's conjecture , 2002, Discret. Math..
[45] Michel Deza,et al. Geometry of cuts and metrics , 2009, Algorithms and combinatorics.
[46] O. Schramm. Illuminating Sets of Constant Width , 1988 .
[47] C. Petty,et al. Equilateral sets in Minkowski spaces , 1971 .
[48] J. Pach. The Beginnings of Geometric Graph Theory , 2013 .
[49] C. A. Rogers. Symmetrical sets of constant width and their partitions , 1971 .
[50] N. J. A. Sloane,et al. Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.
[51] H. Hadwiger. Mitteilung betreffend meine Note: Überdeckung einer Menge durch Mengen kleineren Durchmessers , 1946 .
[52] János Pach,et al. Combinatorial Geometry , 2012 .
[53] Victor Klee,et al. Old And New Unsolved Problems In Plane Geometry And Number Theory , 1991 .
[54] Kiran B. Chilakamarri. Unit-distance graphs in rational n-spaces , 1988, Discret. Math..
[55] Nikolay G. Moshchevitin,et al. Colorings of the space ℝn with several forbidden distances , 2007 .
[56] Gil Kalai,et al. A new approach to Turán's conjecture , 1985, Graphs Comb..
[57] H. S. Witsenhausen. Spherical Sets Without Orthogonal Point Pairs , 1974 .
[58] Peter Keevash,et al. Frankl-Rödl type theorems for codes and permutations , 2014, ArXiv.
[59] J. Matousek,et al. Using The Borsuk-Ulam Theorem , 2007 .
[60] Micha A. Perles,et al. On the Number of Maximal Regular Simplices Determined by n Points in Rd , 2003 .
[61] Zoltán Füredi,et al. Singularities of Minimal Surfaces and Networks and Related Extremal Problems in Minkowski Space , 1990, Discrete and Computational Geometry.
[62] Paul Erdös,et al. Some Old and New Problems in Combinatorial Geometry , 1984 .
[63] Gábor Tardos,et al. Intersection reverse sequences and geometric applications , 2004, J. Comb. Theory, Ser. A.
[64] Vladimir Yu. Protasov,et al. Estimating the chromatic numbers of Euclidean space by convex minimization methods , 2009 .
[65] D. G. Larman,et al. The Decomposition of the n-Sphere and the Boundaries of Plane Convex Domains , 1984 .
[66] Nisheeth K. Vishnoi,et al. The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics into l1 , 2005, FOCS.
[67] Christine Bachoc,et al. Spectral bounds for the independence ratio and the chromatic number of an operator , 2013, 1301.1054.
[68] Noga Alon,et al. On the Complexity of Arrangements of Circles in the Plane , 2001, Discret. Comput. Geom..
[69] Yves Colin de Verdière,et al. Sur un nouvel invariant des graphes et un critère de planarité , 1990, J. Comb. Theory, Ser. B.
[70] Boris V. Dekster. Diameters of the pieces in Borsuk's covering , 1989 .
[71] Andriy Bondarenko. On Borsuk’s Conjecture for Two-Distance Sets , 2014, Discret. Comput. Geom..
[72] Boris V. Dekster. The Borsuk conjecture holds for bodies of revolution , 1995 .
[73] A. Raigorodskii,et al. The Borsuk Partition Problem: The Seventieth Anniversary , 2004 .
[74] Christine Bachoc,et al. The Density of Sets Avoiding Distance 1 in Euclidean Space , 2015, Discret. Comput. Geom..
[75] H. Hadwiger. Überdeckung einer Menge durch Mengen kleineren Durchmessers , 1945 .
[76] Andrei M. Raigorodskii,et al. Counterexamples to Borsuk’s conjecture on spheres of small radius , 2010, ArXiv.
[77] Rafael Villa,et al. A lower bound for the equilateral number of normed spaces , 2006, math/0603614.
[78] Robert Knast. An approximate theorem for Borsuk's conjecture , 1974, Mathematical Proceedings of the Cambridge Philosophical Society.
[79] Jivr'i Matouvsek. The number of unit distances is almost linear for most norms , 2010 .
[80] Paul Erdös,et al. On the combinatorial problems which I would most like to see solved , 1981, Comb..
[81] D. G. Larman. A note on the realization of distances within sets in euclidean space , 1978 .
[82] C. A. Rogers. Covering a sphere with spheres , 1963 .
[83] F. M. D. O. Filho,et al. Fourier analysis, linear programming, and densities of distance avoiding sets in R^n , 2008, 0808.1822.
[84] Ulrich Matthias,et al. Constructive Upper Bounds for the Turán Number , 1997, Combinatorics, Probability and Computing.
[85] Paul D. Seymour,et al. A fractional version of the Erdős-Faber-Lovász conjecture , 1992, Comb..
[86] Nisheeth K. Vishnoi,et al. The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into l/sub 1/ , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).
[87] P. Erdös. On Sets of Distances of n Points , 1946 .
[88] Alexandr Polyanskii,et al. Proof of Schur’s Conjecture in ℝD , 2017, Comb..
[89] C. Rogers,et al. The realization of distances within sets in Euclidean space , 1972 .
[90] Aicke Hinrichs,et al. New sets with large Borsuk numbers , 2003, Discrete Mathematics.
[91] Oren Nechushtan,et al. On the space chromatic number , 2002, Discret. Math..
[92] Alexander E. Guterman,et al. On independence numbers of distance graphs with vertices in {-1,0,1}n: estimates, conjectures, and applications to the Nelson–Erdős–Hadwiger problem and the Borsuk problem , 2010 .
[93] Zsolt Lángi,et al. Ball-Polyhedra , 2007, Discret. Comput. Geom..
[94] Kenneth Falconer,et al. Unsolved Problems In Geometry , 1991 .
[95] Frank Vallentin,et al. A semidefinite programming hierarchy for packing problems in discrete geometry , 2013, Math. Program..
[96] Andrey Kupavskii,et al. On the chromatic number of ℝ9 , 2009 .
[97] Oleg Pikhurko,et al. Spherical sets avoiding a prescribed set of angles , 2015 .
[98] Andrei M. Raigorodskii. Cliques and cycles in distance graphs and graphs of diameters , 2013, Discrete Geometry and Algebraic Combinatorics.
[99] Thomas Jenrich. A 64-dimensional two-distance counterexample to Borsuk's conjecture , 2013 .
[100] Oleg Pikhurko. Borsuk's Conjecture Fails in Dimensions 321 and 322 , 2002 .
[101] Micha A. Perles,et al. Ball polytopes and the Vázsonyi problem , 2009, 0905.1528.
[102] V. Boltjansky,et al. Results and Problems in Combinatorial Geometry , 1985 .
[103] L. Guth,et al. On the Erdős distinct distances problem in the plane , 2015 .
[104] Thomas C. Hales. Sphere packings, I , 1997, Discret. Comput. Geom..
[105] A. Raigorodskii. Surveys in Contemporary Mathematics: Three lectures on the Borsuk partition problem , 2007 .
[106] J. Seidel,et al. SPHERICAL CODES AND DESIGNS , 1991 .
[107] V. V. Bulankina,et al. On Schur’s conjecture in ℝ4 , 2015 .
[108] Hans Raj Tiwary,et al. Exponential Lower Bounds for Polytopes in Combinatorial Optimization , 2011, J. ACM.
[109] Jiri Matousek,et al. Lectures on discrete geometry , 2002, Graduate texts in mathematics.
[110] Noga Alon,et al. Multilinear polynomials and Frankl-Ray-Chaudhuri-Wilson type intersection theorems , 1991, J. Comb. Theory, Ser. A.
[111] V. Boltyanski,et al. Excursions into Combinatorial Geometry , 1996 .
[112] J. J. Seidel,et al. A SURVEY OF TWO-GRAPHS , 1976 .
[113] Geoffrey Exoo,et al. On the Chromatic Number of R 4 , 2014 .