Some old and new problems in combinatorial geometry I: around Borsuk's problem

Borsuk asked in 1933 if every set of diameter 1 in $R^d$ can be covered by $d+1$ sets of smaller diameter. In 1993, a negative solution, based on a theorem by Frankl and Wilson, was given by Kahn and Kalai. In this paper I will present questions related to Borsuk's problem.

[1]  Günter M. Ziegler Coloring Hamming Graphs, Optimal Binary Codes, and the 0/1-Borsuk Problem in Low Dimensions , 2001, Computational Discrete Mathematics.

[2]  János Pach,et al.  Research problems in discrete geometry , 2005 .

[3]  A M Raigorodskii On the dimension in Borsuk's problem , 1997 .

[4]  K. Swanepoel Equilateral sets in finite-dimensional normed spaces , 2004, math/0406264.

[5]  Jeff Kahn,et al.  Coloring Nearly-Disjoint Hypergraphs with n+o(n) Colors , 1992, J. Comb. Theory, Ser. A.

[6]  J. Kahn,et al.  A counterexample to Borsuk's conjecture , 1993, math/9307229.

[7]  Andrey Kupavskiy,et al.  On the chromatic number of Rn with an arbitrary norm , 2011, Discret. Math..

[8]  Vladimir Dol'nikov Some Properties of Graphs of Diameters , 2000, Discret. Comput. Geom..

[9]  Alexandr Polyanskii,et al.  Proof of Schur's conjecture in $\mathbb R^d$ , 2014 .

[10]  Noga Alon Packings with large minimum kissing numbers , 1997, Discret. Math..

[11]  Zsolt Lángi,et al.  On the multiple Borsuk numbers of sets , 2012, 1206.0892.

[12]  J. Bourgain,et al.  On convering a set in R N by balls of the same diameter , 1991 .

[13]  H. Eggleston Covering a Three‐Dimensional set with Sets of Smaller Diameter , 1955 .

[14]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[15]  Oded Schramm,et al.  On the volume of sets having constant width , 1988 .

[16]  D. R. WQODALL Distances Realized by Sets Covering the Plane* , 2003 .

[17]  Karol Borsuk Drei Sätze über die n-dimensionale euklidische Sphäre , 1933 .

[18]  Andrei Mikhailovich Raigorodskii,et al.  New lower bounds for the independence numbers of distance graphs with vertices in {−1, 0, 1}n , 2011 .

[19]  Andrei Mikhailovich Raigorodskii On a bound in Borsuk's problem , 1999 .

[20]  B. V. Dekster The Borsuk conjecture holds for convex bodies with a belt of regular points , 1993 .

[21]  V. V. Bulankina,et al.  On Schur’s conjecture in ℝ4 , 2014 .

[22]  Jeff Kahn,et al.  A Problem of Füredi and Seymour on Covering Intersecting Families by Pairs , 1994, J. Comb. Theory, Ser. A.

[23]  Nicholas C. Wormald,et al.  Bounds on the measurable chromatic number of Rn , 1989, Discret. Math..

[24]  P. Delsarte AN ALGEBRAIC APPROACH TO THE ASSOCIATION SCHEMES OF CODING THEORY , 2011 .

[25]  Alexander Barg,et al.  Linear Codes with Exponentially Many Light Vectors , 2001, J. Comb. Theory A.

[26]  J. Kahn Asymptotics of Hypergraph Matching, Covering and Coloring Problems , 1995 .

[27]  N. Wormald A 4-chromatic graph with a special plane drawing , 1979 .

[28]  A. Raigorodskii Coloring Distance Graphs and Graphs of Diameters , 2013 .

[29]  Dominique de Caen,et al.  Large Equiangular Sets of Lines in Euclidean Space , 2000, Electron. J. Comb..

[30]  H. Hadwiger,et al.  Ein ?berdeckungssätze für den Euklidischen Raum , 1944 .

[31]  Márton Naszódi,et al.  Rigidity of ball-polyhedra in Euclidean 3-space , 2006, Eur. J. Comb..

[32]  Jacob Steinhardt,et al.  On Coloring the Odd-Distance Graph , 2009, Electron. J. Comb..

[33]  B. Aronov,et al.  Discrete and computational geometry : the Goodman-Pollack Festschrift , 2003 .

[34]  Noga Alon,et al.  Equilateral sets in l np , 2002 .

[35]  F. Thorne,et al.  Geometry of Numbers , 2017, Algebraic Number Theory.

[36]  Fernando Mário Oliveira Filho,et al.  Lower Bounds for Measurable Chromatic Numbers , 2008, 0801.1059.

[37]  Philip D. Plowright,et al.  Convexity , 2019, Optimization for Chemical and Biochemical Engineering.

[38]  H. Busemann,et al.  Intrinsic Area. , 1946, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Peter Frankl,et al.  Intersection theorems with geometric consequences , 1981, Comb..

[40]  N. Alon,et al.  Equilateral Sets in lpn , 2003 .

[41]  B. Grünbaum A simple proof of Borsuk's conjecture in three dimensions , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[42]  P. Révész,et al.  Zum Borsukschen Zerteilungsproblem , 1956 .

[43]  Rom Pinchasi,et al.  Gallai—Sylvester Theorem for Pairwise Intersecting Unit Circles , 2002, Discret. Comput. Geom..

[44]  Aicke Hinrichs Spherical codes and Borsuk's conjecture , 2002, Discret. Math..

[45]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[46]  O. Schramm Illuminating Sets of Constant Width , 1988 .

[47]  C. Petty,et al.  Equilateral sets in Minkowski spaces , 1971 .

[48]  J. Pach The Beginnings of Geometric Graph Theory , 2013 .

[49]  C. A. Rogers Symmetrical sets of constant width and their partitions , 1971 .

[50]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[51]  H. Hadwiger Mitteilung betreffend meine Note: Überdeckung einer Menge durch Mengen kleineren Durchmessers , 1946 .

[52]  János Pach,et al.  Combinatorial Geometry , 2012 .

[53]  Victor Klee,et al.  Old And New Unsolved Problems In Plane Geometry And Number Theory , 1991 .

[54]  Kiran B. Chilakamarri Unit-distance graphs in rational n-spaces , 1988, Discret. Math..

[55]  Nikolay G. Moshchevitin,et al.  Colorings of the space ℝn with several forbidden distances , 2007 .

[56]  Gil Kalai,et al.  A new approach to Turán's conjecture , 1985, Graphs Comb..

[57]  H. S. Witsenhausen Spherical Sets Without Orthogonal Point Pairs , 1974 .

[58]  Peter Keevash,et al.  Frankl-Rödl type theorems for codes and permutations , 2014, ArXiv.

[59]  J. Matousek,et al.  Using The Borsuk-Ulam Theorem , 2007 .

[60]  Micha A. Perles,et al.  On the Number of Maximal Regular Simplices Determined by n Points in Rd , 2003 .

[61]  Zoltán Füredi,et al.  Singularities of Minimal Surfaces and Networks and Related Extremal Problems in Minkowski Space , 1990, Discrete and Computational Geometry.

[62]  Paul Erdös,et al.  Some Old and New Problems in Combinatorial Geometry , 1984 .

[63]  Gábor Tardos,et al.  Intersection reverse sequences and geometric applications , 2004, J. Comb. Theory, Ser. A.

[64]  Vladimir Yu. Protasov,et al.  Estimating the chromatic numbers of Euclidean space by convex minimization methods , 2009 .

[65]  D. G. Larman,et al.  The Decomposition of the n-Sphere and the Boundaries of Plane Convex Domains , 1984 .

[66]  Nisheeth K. Vishnoi,et al.  The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics into l1 , 2005, FOCS.

[67]  Christine Bachoc,et al.  Spectral bounds for the independence ratio and the chromatic number of an operator , 2013, 1301.1054.

[68]  Noga Alon,et al.  On the Complexity of Arrangements of Circles in the Plane , 2001, Discret. Comput. Geom..

[69]  Yves Colin de Verdière,et al.  Sur un nouvel invariant des graphes et un critère de planarité , 1990, J. Comb. Theory, Ser. B.

[70]  Boris V. Dekster Diameters of the pieces in Borsuk's covering , 1989 .

[71]  Andriy Bondarenko On Borsuk’s Conjecture for Two-Distance Sets , 2014, Discret. Comput. Geom..

[72]  Boris V. Dekster The Borsuk conjecture holds for bodies of revolution , 1995 .

[73]  A. Raigorodskii,et al.  The Borsuk Partition Problem: The Seventieth Anniversary , 2004 .

[74]  Christine Bachoc,et al.  The Density of Sets Avoiding Distance 1 in Euclidean Space , 2015, Discret. Comput. Geom..

[75]  H. Hadwiger Überdeckung einer Menge durch Mengen kleineren Durchmessers , 1945 .

[76]  Andrei M. Raigorodskii,et al.  Counterexamples to Borsuk’s conjecture on spheres of small radius , 2010, ArXiv.

[77]  Rafael Villa,et al.  A lower bound for the equilateral number of normed spaces , 2006, math/0603614.

[78]  Robert Knast An approximate theorem for Borsuk's conjecture , 1974, Mathematical Proceedings of the Cambridge Philosophical Society.

[79]  Jivr'i Matouvsek The number of unit distances is almost linear for most norms , 2010 .

[80]  Paul Erdös,et al.  On the combinatorial problems which I would most like to see solved , 1981, Comb..

[81]  D. G. Larman A note on the realization of distances within sets in euclidean space , 1978 .

[82]  C. A. Rogers Covering a sphere with spheres , 1963 .

[83]  F. M. D. O. Filho,et al.  Fourier analysis, linear programming, and densities of distance avoiding sets in R^n , 2008, 0808.1822.

[84]  Ulrich Matthias,et al.  Constructive Upper Bounds for the Turán Number , 1997, Combinatorics, Probability and Computing.

[85]  Paul D. Seymour,et al.  A fractional version of the Erdős-Faber-Lovász conjecture , 1992, Comb..

[86]  Nisheeth K. Vishnoi,et al.  The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into l/sub 1/ , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[87]  P. Erdös On Sets of Distances of n Points , 1946 .

[88]  Alexandr Polyanskii,et al.  Proof of Schur’s Conjecture in ℝD , 2017, Comb..

[89]  C. Rogers,et al.  The realization of distances within sets in Euclidean space , 1972 .

[90]  Aicke Hinrichs,et al.  New sets with large Borsuk numbers , 2003, Discrete Mathematics.

[91]  Oren Nechushtan,et al.  On the space chromatic number , 2002, Discret. Math..

[92]  Alexander E. Guterman,et al.  On independence numbers of distance graphs with vertices in {-1,0,1}n: estimates, conjectures, and applications to the Nelson–Erdős–Hadwiger problem and the Borsuk problem , 2010 .

[93]  Zsolt Lángi,et al.  Ball-Polyhedra , 2007, Discret. Comput. Geom..

[94]  Kenneth Falconer,et al.  Unsolved Problems In Geometry , 1991 .

[95]  Frank Vallentin,et al.  A semidefinite programming hierarchy for packing problems in discrete geometry , 2013, Math. Program..

[96]  Andrey Kupavskii,et al.  On the chromatic number of ℝ9 , 2009 .

[97]  Oleg Pikhurko,et al.  Spherical sets avoiding a prescribed set of angles , 2015 .

[98]  Andrei M. Raigorodskii Cliques and cycles in distance graphs and graphs of diameters , 2013, Discrete Geometry and Algebraic Combinatorics.

[99]  Thomas Jenrich A 64-dimensional two-distance counterexample to Borsuk's conjecture , 2013 .

[100]  Oleg Pikhurko Borsuk's Conjecture Fails in Dimensions 321 and 322 , 2002 .

[101]  Micha A. Perles,et al.  Ball polytopes and the Vázsonyi problem , 2009, 0905.1528.

[102]  V. Boltjansky,et al.  Results and Problems in Combinatorial Geometry , 1985 .

[103]  L. Guth,et al.  On the Erdős distinct distances problem in the plane , 2015 .

[104]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[105]  A. Raigorodskii Surveys in Contemporary Mathematics: Three lectures on the Borsuk partition problem , 2007 .

[106]  J. Seidel,et al.  SPHERICAL CODES AND DESIGNS , 1991 .

[107]  V. V. Bulankina,et al.  On Schur’s conjecture in ℝ4 , 2015 .

[108]  Hans Raj Tiwary,et al.  Exponential Lower Bounds for Polytopes in Combinatorial Optimization , 2011, J. ACM.

[109]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[110]  Noga Alon,et al.  Multilinear polynomials and Frankl-Ray-Chaudhuri-Wilson type intersection theorems , 1991, J. Comb. Theory, Ser. A.

[111]  V. Boltyanski,et al.  Excursions into Combinatorial Geometry , 1996 .

[112]  J. J. Seidel,et al.  A SURVEY OF TWO-GRAPHS , 1976 .

[113]  Geoffrey Exoo,et al.  On the Chromatic Number of R 4 , 2014 .