First-principles simulation of photonic crystal surface-emitting lasers using rigorous coupled wave analysis

We show that the threshold of a photonic crystal surface-emitting laser can be calculated from first-principles by the method of rigorous coupled wave analysis (RCWA), which has been widely used to simulate the response spectra of passive periodic structures. Here, the scattering matrix (S-matrix) of a surface-emitting laser structure with added gain is calculated on the complex frequency plane using RCWA, and the lasing threshold is determined by the value of the gain for which the pole of the S-matrix reaches the real axis. This approach can be used for surface emitting laser structures in general and is particularly useful for those with complex in-plane structures.

[1]  F. Koyama,et al.  Room-temperature continuous wave lasing characteristics of a GaAs vertical cavity surface-emitting laser , 1989 .

[2]  C. Z. Ning,et al.  Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure , 2009 .

[3]  J. Joannopoulos,et al.  Temporal coupled-mode theory for the Fano resonance in optical resonators. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[4]  T. Lu,et al.  Design of Low-Threshold Photonic Crystal Surface-Emitting Lasers , 2012, IEEE Photonics Technology Letters.

[5]  Soon-Hong Kwon,et al.  Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs , 2002 .

[6]  S. Noda,et al.  On-chip beam-steering photonic-crystal lasers , 2010 .

[7]  Zhengbin Li,et al.  Three-dimensional coupled-wave theory for the guided mode resonance in photonic crystal slabs: TM-like polarization. , 2014, Optics letters.

[8]  M. Soljačić,et al.  Low-threshold lasing action in photonic crystal slabs enabled by Fano resonances. , 2011, Optics express.

[9]  Shanhui Fan,et al.  GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN∕GaN distributed Bragg reflector , 2008 .

[10]  C.J. Chang-Hasnain,et al.  Tunable VCSEL , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[11]  Jerry R. Meyer,et al.  Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers , 2003 .

[12]  D. Whittaker,et al.  Scattering-matrix treatment of patterned multilayer photonic structures , 1999 .

[13]  S. Noda,et al.  Watt-class high-power, high-beam-quality photonic-crystal lasers , 2014, Nature Photonics.

[14]  S. Noda,et al.  Photonic-Crystal Surface-Emitting Lasers: Review and Introduction of Modulated-Photonic Crystals , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  T. Ishihara,et al.  Quasiguided modes and optical properties of photonic crystal slabs , 2002 .

[16]  Shanhui Fan,et al.  Analysis of guided resonances in photonic crystal slabs , 2002 .

[17]  T. Gaylord,et al.  Rigorous coupled-wave analysis of planar-grating diffraction , 1981 .

[18]  A. Scherer,et al.  Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization , 1991 .

[19]  S. Rotter,et al.  Ab initio self-consistent laser theory and random lasers , 2008, 0811.3542.

[20]  Li Ge,et al.  Steady-state ab initio laser theory : generalizations and analytic results , 2010, 1008.0628.

[21]  Kent D. Choquette,et al.  Selectively oxidised vertical cavity surface emitting lasers with 50% power conversion efficiency , 1995 .

[22]  Masaya Notomi,et al.  Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps , 2001 .

[23]  H. Kosaka Smart integration and packaging of 2D VCSEL's for high-speed parallel links , 1999 .

[24]  S. Noda,et al.  Coupled-wave analysis for photonic-crystal surface-emitting lasers on air holes with arbitrary sidewalls. , 2011, Optics express.

[25]  Soon-Hong Kwon,et al.  Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs , 2002, QELS 2002.

[26]  K Ohtaka,et al.  Low-threshold laser oscillation due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals. , 1999, Optics express.

[27]  S. Noda,et al.  Coupled-Wave Theory for Square-Lattice Photonic Crystal Lasers With TE Polarization , 2010, IEEE Journal of Quantum Electronics.

[28]  S. Noda,et al.  Three-dimensional coupled-wave analysis for square-lattice photonic crystal surface emitting lasers with transverse-electric polarization: finite-size effects. , 2012, Optics express.

[29]  K. Iga,et al.  GaInAsP/InP Surface Emitting Injection Lasers , 1979 .

[30]  J. Faist,et al.  Analytical coupled-wave model for photonic crystal surface-emitting quantum cascade lasers. , 2017, Optics express.

[31]  Yoshinori Tanaka,et al.  GaN Photonic-Crystal Surface-Emitting Laser at Blue-Violet Wavelengths , 2008, Science.

[32]  Steven G. Johnson,et al.  Dielectric profile variations in high-index-contrast waveguides, coupled mode theory, and perturbation expansions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  A. Douglas Stone,et al.  Steady-state ab initio theory of lasers with injected signals , 2013, 1303.2992.

[34]  Shanhui Fan,et al.  S4 : A free electromagnetic solver for layered periodic structures , 2012, Comput. Phys. Commun..

[35]  Neal B. Abraham,et al.  Polarization properties of vertical-cavity surface-emitting lasers , 1997 .

[36]  Rémy Braive,et al.  Continuous-wave operation of photonic band-edge laser near 1.55 μm on silicon wafer , 2007 .

[37]  John D. Joannopoulos,et al.  Laser action from two-dimensional distributed feedback in photonic crystals , 1999 .

[38]  M. Notomi,et al.  Finite-difference time-domain investigation of band-edge resonant modes in finite-size two-dimensional photonic crystal slab , 2003 .

[39]  S. Noda,et al.  Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: A general approach , 2011, 1107.1772.

[40]  Hakan E. Tureci,et al.  Self-consistent multimode lasing theory for complex or random lasing media (17 pages) , 2006 .

[41]  Susumu Noda,et al.  Multidirectionally distributed feedback photonic crystal lasers , 2002 .

[42]  C. Ning,et al.  Modal gain in a semiconductor nanowire laser with anisotropic bandstructure , 2004, IEEE Journal of Quantum Electronics.

[43]  M. Soljačić,et al.  Larger-area single-mode photonic crystal surface-emitting lasers enabled by an accidental Dirac point. , 2013, Optics letters.