Determination of the size distribution of lecithin liposomes: a comparative study using freeze fracture, cryoelectron microscopy and dynamic light scattering

The size distribution of liposomes is often determined using freeze fracture, cryoelectron microscopy or dynamic light scattering. However, the resulting size distributions do not directly coincide owing to the different weighting of the techniques. We present several methods which correct for these effects and allow a comparison of liposome size distributions as obtained by freeze fracture, cryoelectron microscopy or dynamic light scattering. These methods are based on theoretical models for the weighting of the size distribution of liposomes, which result from the preparation procedure for freeze fracture electron microscopy and from the measurement by dynamic light scattering. The proposed transformation methods are then experimentally tested with a sample of lecithin liposomes, whose size distribution was determined by dynamic light scattering, freeze fracture and cryoelectron microscopy. Furthermore, the weaknesses of the experimental techniques and hence of the resulting size distributions are discussed.

[1]  J. Wolfowitz,et al.  An Introduction to the Theory of Statistics , 1951, Nature.

[2]  R. Anderssen On the Use of Linear Functionals for Abel—Type Integral Equations in Applications , 1980 .

[3]  J. McWhirter A Stabilized Model-fitting Approach to the Processing of Laser Anemometry and Other Photon-correlation Data , 1980 .

[4]  U. Sleytr,et al.  Low Temperature Methods in Biological Electron Microscopy , 1985 .

[5]  G. Bach Kugelgrößenverteilung und Verteilung der Schnittkreise; ihre wechselseitigen Beziehungen und Verfahren zur Bestimmung der einen aus der anderen , 1967 .

[6]  W. Nagel,et al.  The comparison by simulation of solutions of Wicksell's corpuscle problem , 1984 .

[7]  B. Berne,et al.  Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics , 1976 .

[8]  T. Mattfeldt Stochastic Geometry and Its Applications , 1996 .

[9]  L. M. Orive,et al.  Particle size‐shape distributions: the general spheroid problem: II. Stochastic model and practical guide , 1978 .

[10]  O. Glatter,et al.  A new method for the evaluation of small‐angle scattering data , 1977 .

[11]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[12]  R. Coleman The Sizes of Spheres from Profiles in a Thin Slice I. Opaque Spheres , 1982 .

[13]  P. E. Rose Improved tables for the evaluation of sphere size distributions including the effect of section thickness , 1980, Journal of microscopy.

[14]  P. Schurtenberger,et al.  Micelle to vesicle transition in aqueous solutions of bile salt and lecithin , 1985 .

[15]  J. Rigaut Non-parametric estimation of sphere size distributions from profile area distributions in sections showing overprojection and truncation , 1984 .

[16]  L E Scriven,et al.  Controlled environment vitrification system: an improved sample preparation technique. , 1988, Journal of electron microscopy technique.

[17]  J. Dubochet,et al.  Cryo-electron microscopy of viruses , 1984, Nature.

[18]  E. Pike,et al.  On the numerical inversion of the Laplace transform and similar Fredholm integral equations of the first kind , 1978 .

[19]  A. Verkleij,et al.  Automatic size determination of membrane vesicles by freeze‐fracture electron microscopy , 1992 .

[20]  R. New,et al.  Liposomes : a practical approach , 1990 .

[21]  F. Hallett,et al.  Determination of vesicle size distributions by freeze-fracture electron microscopy. , 1991, Journal of electron microscopy technique.

[22]  S. Aragon,et al.  Theory of dynamic light scattering from polydisperse systems , 1976 .

[23]  L. Cruz-Orive,et al.  Distribution‐free estimation of sphere size distributions from slabs showing overprojection and truncation, with a review of previous methods , 1983 .

[24]  J. Murray,et al.  Principles for the construction and operation of a device for rapidly freezing suspensions for cryo‐electron microscopy , 1987 .

[25]  P. Schurtenberger,et al.  Shape Transformations in the Lecithin-Bile Salt System: From Cylinders to Vesicles , 1994 .

[26]  F. Hallett,et al.  Vesicle sizing: Number distributions by dynamic light scattering. , 1991, Biophysical journal.

[27]  Dennis E. Koppel,et al.  Analysis of Macromolecular Polydispersity in Intensity Correlation Spectroscopy: The Method of Cumulants , 1972 .

[28]  H. Moor,et al.  Freezing in a propane jet and its application in freeze-fracturing. , 1980, Mikroskopie.

[29]  L. M. Orive Particle size‐shape distributions: The general spheroid problem , 1976, Journal of microscopy.

[30]  S. Provencher A constrained regularization method for inverting data represented by linear algebraic or integral equations , 1982 .

[31]  S. D. Wicksell,et al.  THE CORPUSCLE PROBLEM. A MATHEMATICAL STUDY OF A BIOMETRIC PROBLEM , 1925 .

[32]  Mark A. Lukas,et al.  The application and numerical solution of integral equations , 1980 .

[33]  T K Yanev,et al.  A probability concept about size distributions of sonicated lipid vesicles. , 1985, Biochimica et biophysica acta.

[34]  Didier Sornette,et al.  Exponential Sampling Method for Light Scattering Polydispersity Analysis , 1981 .

[35]  A. Verkleij,et al.  Size determination of sonicated vesicles by freeze‐fracture electron microscopy, using the spray‐freezing method , 1980 .

[36]  O. Glatter Convolution square root of band-limited symmetrical functions and its application to small-angle scattering data , 1981 .

[37]  F P Booy,et al.  Electron microscopy of frozen biological suspensions , 1983, Journal of microscopy.

[38]  U. Jakubowski,et al.  Preparation of ultrathin amorphous ice films for cryo‐electron microscopy , 1991 .

[39]  H. Hauser,et al.  Characterization of the size distribution of unilamellar vesicles by gel filtration, quasi-elastic light scattering and electron microscopy , 1984 .

[40]  Estimating the distribution of spherical and elliptical bodies in conglomerates from plane sections. , 1970, Biometrics.

[41]  J. Dubochet,et al.  Electron microscopy of frozen water and aqueous solutions , 1982 .

[42]  D. Small,et al.  Studies on simple and mixed bile salt micelles by nuclear magnetic resonance spectroscopy. , 1969, Biochimica et biophysica acta.

[43]  Y. Talmon,et al.  Time-resolved cryotransmission electron microscopy. , 1990, Journal of electron microscopy technique.

[44]  J. Dubochet,et al.  Cryo-electron microscopy of vitrified specimens , 1988, Quarterly Reviews of Biophysics.