Numerical approximation of incompressible Navier-Stokes equations based on an auxiliary energy variable

Abstract We present a numerical scheme for approximating the incompressible Navier-Stokes equations based on an auxiliary variable associated with the total system energy. By introducing a dynamic equation for the auxiliary variable and reformulating the Navier-Stokes equations into an equivalent system, the scheme satisfies a discrete energy stability property in terms of a modified energy and it allows for an efficient solution algorithm and implementation. Within each time step, the algorithm involves the computations of two pressure fields and two velocity fields by solving several de-coupled individual linear algebraic systems with constant coefficient matrices, together with the solution of a nonlinear algebraic equation about a scalar number involving a negligible cost. A number of numerical experiments are presented to demonstrate the accuracy and the performance of the presented algorithm.

[1]  A. Veldman,et al.  Symmetry-preserving discretization of turbulent flow , 2003 .

[2]  James J. Feng,et al.  A diffuse-interface method for simulating two-phase flows of complex fluids , 2004, Journal of Fluid Mechanics.

[3]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[4]  G. Karniadakis,et al.  Elimination of vortex streets in bluff-body flows. , 2008, Physical review letters.

[5]  Jie Shen,et al.  A Unstructured Nodal Spectral-Element Method for the Navier-Stokes Equations , 2012 .

[6]  L. Kovasznay Laminar flow behind a two-dimensional grid , 1948 .

[7]  Richard Pasquetti,et al.  On the efficiency of semi‐implicit and semi‐Lagrangian spectral methods for the calculation of incompressible flows , 2001 .

[8]  M. Minion,et al.  Accurate projection methods for the incompressible Navier—Stokes equations , 2001 .

[9]  Suchuan Dong,et al.  Direct numerical simulation of spiral turbulence , 2009, Journal of Fluid Mechanics.

[10]  Suchuan Dong,et al.  A convective-like energy-stable open boundary condition for simulations of incompressible flows , 2015, J. Comput. Phys..

[11]  Robert L. Pego,et al.  Stability and convergence of efficient Navier‐Stokes solvers via a commutator estimate , 2007 .

[12]  Jiang Yang,et al.  The scalar auxiliary variable (SAV) approach for gradient flows , 2018, J. Comput. Phys..

[13]  Suchuan Dong,et al.  Direct numerical simulation of turbulent Taylor–Couette flow , 2007, Journal of Fluid Mechanics.

[14]  J. C. Simo,et al.  Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier-Stokes and Euler equations , 1994 .

[15]  Jie Shen,et al.  A time-stepping scheme involving constant coefficient matrices for phase-field simulations of two-phase incompressible flows with large density ratios , 2012, J. Comput. Phys..

[16]  George Em Karniadakis,et al.  Dynamics and low-dimensionality of a turbulent near wake , 2000, Journal of Fluid Mechanics.

[17]  Benjamin Sanderse,et al.  Energy-conserving Runge-Kutta methods for the incompressible Navier-Stokes equations , 2013, J. Comput. Phys..

[18]  Jie Shen,et al.  A new class of truly consistent splitting schemes for incompressible flows , 2003 .

[19]  Tao Zhang,et al.  Energy Stability Analysis of Some Fully Discrete Numerical Schemes for Incompressible Navier–Stokes Equations on Staggered Grids , 2018, J. Sci. Comput..

[20]  P. Moin,et al.  Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .

[21]  George Em Karniadakis,et al.  A triangular spectral element method; applications to the incompressible Navier-Stokes equations , 1995 .

[22]  Evidence for internal structures of spiral turbulence. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  S. Orszag,et al.  High-order splitting methods for the incompressible Navier-Stokes equations , 1991 .

[24]  Suchuan Dong,et al.  Multiphase flows of N immiscible incompressible fluids: A reduction-consistent and thermodynamically-consistent formulation and associated algorithm , 2017, J. Comput. Phys..

[25]  George E. Karniadakis,et al.  Sub-iteration leads to accuracy and stability enhancements of semi-implicit schemes for the Navier-Stokes equations , 2011, J. Comput. Phys..

[26]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[27]  Leo G. Rebholz,et al.  The stabilized extrapolated trapezoidal finite-element method for the Navier–Stokes equations , 2009 .

[28]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I) , 1969 .

[29]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[30]  Suchuan Dong,et al.  An eigen-based high-order expansion basis for structured spectral elements , 2011, J. Comput. Phys..

[31]  G. Karniadakis,et al.  A combined direct numerical simulation–particle image velocimetry study of the turbulent near wake , 2006, Journal of Fluid Mechanics.

[32]  Jie Shen,et al.  An unconditionally stable rotational velocity-correction scheme for incompressible flows , 2010, J. Comput. Phys..

[33]  Jie Shen On error estimates of projection methods for Navier-Stokes equations: first-order schemes , 1992 .

[34]  Spencer J. Sherwin,et al.  Velocity-correction schemes for the incompressible Navier-Stokes equations in general coordinate systems , 2016, J. Comput. Phys..

[35]  H. Abels,et al.  Thermodynamically Consistent, Frame Indifferent Diffuse Interface Models for Incompressible Two-Phase Flows with Different Densities , 2011, 1104.1336.

[36]  Nan Jiang,et al.  An optimally accurate discrete regularization for second order timestepping methods for Navier-Stokes equations , 2016 .

[37]  P. Moin,et al.  Numerical studies of flow over a circular cylinder at ReD=3900 , 2000 .