Finite Generation Problem and n-ary Quantifiers

An abstract logic,ℒ is finitely generated if it can be represented in the form ℒ ωω (Q) where Q is a finite set of Lindstrom quantifiers. This article is a survey of a fairly general method for proving that a given logic is not finitely generated. The main ingredients of this method are a back-and-forth charcterization of equivalence with respect to all n-ary quantifiers and constructions of non-isomorphic models for which this characterization applies.

[1]  A. Ehrenfeucht An application of games to the completeness problem for formalized theories , 1961 .

[2]  Martin Weese Generalized Ehrenfeucht games , 1980 .

[3]  K. J. Barwise,et al.  Axioms for abstract model theory , 1974 .

[4]  Shlomo Vinner A generalization of Ehrenfeucht’s game and some applications , 1972 .

[5]  Steven Garavaglia Relative strength of Malitz quantifiers , 1978, Notre Dame J. Formal Log..

[6]  A. B. Slomson,et al.  Generalized quantifiers and well orderings , 1972 .

[7]  Alistair H. Lachlan,et al.  Vector spaces and binary quantifiers , 1984, Notre Dame J. Formal Log..

[8]  Lauri Hella,et al.  Remarks on The Cartesian Closure , 1991, Math. Log. Q..

[9]  Jouko A. Väänänen,et al.  Henkin and Function Quantifiers , 1989, Ann. Pure Appl. Log..

[10]  M. Krynicki,et al.  Ehrenfeucht games for generalized quantifiers , 1976 .

[11]  Paolo Lipparini,et al.  Limit ultrapowers and abstract logics , 1987, Journal of Symbolic Logic.

[12]  A. Mostowski On a generalization of quantifiers , 1957 .

[13]  Xavier Caicedo,et al.  Definability properties and the congruence closure , 1990, Arch. Math. Log..

[14]  Saharon Shelah,et al.  Stationary logic and its friends. II , 1985, Notre Dame J. Formal Log..

[15]  Jouko A. Väänänen,et al.  On orderings of the family of all logics , 1980, Arch. Math. Log..

[16]  Harvey M. Friedman,et al.  Beth’s theorem in cardinality logics , 1973 .

[17]  William Elbert Brown Infinitary languages, generalized quantifiers, and generalized products , 1972 .

[18]  L. Badger An Ehrenfeucht game for the multivariable quantifiers of Malitz and some applications. , 1977 .

[19]  J. A. Makowsky,et al.  The theorems of Beth and Craig in abstract model theory. I. The abstract setting , 1979 .

[20]  Perlindström First Order Predicate Logic with Generalized Quantifiers , 1966 .

[21]  L. Hella,et al.  The Beth-closure of l(qα) is not finitely generated , 1992 .

[22]  Lauri Hella,et al.  Logical hierarchies in PTIME , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[23]  S. Shelah,et al.  δ-Logics and generalized quantifiers , 1976 .

[24]  Lauri Hella,et al.  Definability Hierarchies of Generalized Quantifiers , 1989, Ann. Pure Appl. Log..