By using time domain reflectometry (TDR), a fixed-position monitoring research on the dynamics of soil water under Eucommia ulmoides plantation was conducted in a hilly red soil region of southern China. The results showed that there was a significant difference in the soil water storage among different months, and the dynamics of soil water could be divided into the phases of reduction, increase, and more reduction. Soil water varied significantly in its vertical distribution, and the variation pattern also differed with seasons. The vertical distribution of soil water could be divided into two phases, i.e., accumulation and depletion based on the seasonal variation of soil water, or rainy season and dry season based on the monthly variation of rainfall. Soil water was correlated significantly (P < 0.05) with relative humidity (RH), air temperature (t), vapor pressure deficit (VPD) and rainfall (R), and regulated by these meteorological factors synthetically, among which, rainfall was the most important factor, followed by air temperature. The soil water loss rate after rain had a significant hyperbolic relationship with durative droughty days, while soil water storage had a significant linear negative relationship with this duration (P < 0.05). With the extension of drought duration after rain, soil water loss tended to vary gently with increasing soil depth.