A Generalized Prony Method for Filter Recovery in Evolutionary System via Spatiotemporal Trade Off

We consider the problem of spatiotemporal sampling in an evolutionary process $x^{(n)}=A^nx$ where an unknown linear operator $A$ driving an unknown initial state $x$ is to be recovered from a combined set of coarse spatial samples $\{x|_{\Omega_0}, x^{(1)}|_{\Omega_1},\cdots, x^{(N)}|_{\Omega_N}\}$. In this paper, we will study the case of infinite dimensional spatially invariant evolutionary process, where the unknown initial signals $x $ are modeled as $\ell^2(\mathbb{Z})$ and $A$ is an unknown spatial convolution operator given by a filter $a \in \ell^1(\mathbb{Z})$ so that $Ax=a*x$. We show that $\{x|_{\Omega_m}, x^{(1)}|_{\Omega_m},\cdots, x^{(N)}|_{\Omega_m}: N \geq 2m-1, \Omega_m=m\mathbb{Z}\}$ contains enough information to recover the Fourier spectrum of a typical low pass filter $a$, if the initial signal $x$ is from a dense subset of $\ell^2(\mathbb{Z})$. The idea is based on a nonlinear, generalized Prony method similar to \cite{AK14}. We provide an algorithm for the case when both $a$ and $x$ are compactly supported around the center. Finally, we perform the accuracy analysis based on the spectral properties of the operator $A$ and the initial state $x$, and verify them by several numerical experiments.

[1]  Walter Gautschi,et al.  Norm estimates for inverses of Vandermonde matrices , 1974 .

[2]  A. Mayeli,et al.  Exponential bases, Paley-Wiener spaces and applications , 2014, 1410.3170.

[3]  Karlheinz Gröchenig,et al.  Relevant Sampling of Band-limited Functions , 2012, ArXiv.

[4]  Gerlind Plonka,et al.  A generalized Prony method for reconstruction of sparse sums of eigenfunctions of linear operators , 2013 .

[5]  G. Franzé,et al.  Vandermonde matrices on Chebyshev points , 1998 .

[6]  Akram Aldroubi,et al.  Dynamical sampling: Time–space trade-off☆ , 2013 .

[7]  Martin Vetterli,et al.  Distributed Sampling of Signals Linked by Sparse Filtering: Theory and Applications , 2010, IEEE Transactions on Signal Processing.

[8]  M. Vetterli,et al.  Sparse Sampling of Signal Innovations , 2008, IEEE Signal Processing Magazine.

[9]  M. Nashed,et al.  Sampling and Reconstruction of Signals in a Reproducing Kernel Subspace of $L^p({\Bbb R}^d)$ , 2009, ArXiv.

[10]  Palle E. T. Jorgensen,et al.  A SAMPLING THEORY FOR INFINITE WEIGHTED GRAPHS , 2011 .

[11]  Walter Gautschi,et al.  How (Un)stable Are Vandermonde Systems? , 2020, Asymptotic and Computational Analysis.

[12]  Gerald Matz,et al.  Distributed Field Reconstruction in Wireless Sensor Networks Based on Hybrid Shift-Invariant Spaces , 2012, IEEE Transactions on Signal Processing.

[13]  A. Timan Theory of Approximation of Functions of a Real Variable , 1994 .

[14]  Ė. B. Vinberg,et al.  A course in algebra , 2003 .

[15]  Jens Gerlach Christensen,et al.  SAMPLING IN SPACES OF BANDLIMITED FUNCTIONS ON COMMUTATIVE SPACES , 2011, 1107.4578.

[16]  Akram Aldroubi,et al.  Krylov Subspace Methods in Dynamical Sampling , 2014, ArXiv.

[17]  Akram Aldroubi,et al.  Finite Dimensional Dynamical Sampling: An Overview , 2015 .

[18]  Akram Aldroubi,et al.  Dynamical Sampling in Shift-Invariant Spaces , 2013 .

[19]  Sui Tang,et al.  Dynamical Sampling in Hybrid Shift Invariant Spaces , 2014 .

[20]  Akram Aldroubi,et al.  Exact Reconstruction of Signals in Evolutionary Systems Via Spatiotemporal Trade-off , 2015 .

[21]  T. Strohmer Finite-and Infinite-Dimensional Models for Oversampled Filter Banks , 2001 .

[22]  Akram Aldroubi,et al.  Nonuniform Sampling and Reconstruction in Shift-Invariant Spaces , 2001, SIAM Rev..

[23]  Qiyu Sun,et al.  Nonuniform Average Sampling and Reconstruction of Signals with Finite Rate of Innovation , 2006, SIAM J. Math. Anal..

[24]  Roland Badeau,et al.  High-resolution spectral analysis of mixtures of complex exponentials modulated by polynomials , 2006, IEEE Transactions on Signal Processing.

[25]  Ben Adcock,et al.  Generalized sampling and the stable and accurate reconstruction of piecewise analytic functions from their Fourier coefficients , 2014, Math. Comput..

[26]  J. Coyle Inverse Problems , 2004 .

[27]  Martin Vetterli,et al.  Spatial super-resolution of a diffusion field by temporal oversampling in sensor networks , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[28]  Qiyu Sun,et al.  Frames in spaces with finite rate of innovation , 2008, Adv. Comput. Math..

[29]  Deguang Han,et al.  Sampling Expansions in Reproducing Kernel Hilbert and Banach Spaces , 2009 .

[30]  Dmitry Batenkov,et al.  On the Accuracy of Solving Confluent Prony Systems , 2011, SIAM J. Appl. Math..