N A ] 3 1 M ay 2 01 8 A three-level linearized di ff erence scheme for the coupled nonlinear fractional Ginzburg-Landau equation

In this paper, the coupled fractional Ginzburg-Landau equations are first time investigated numerically. A linearized implicit finite difference scheme is proposed. The scheme involves three time levels, is unconditionally stable and second-order accurate in both time and space variables. The unique solvability, the unconditional stability and optimal pointwise error estimates are obtained by using the energy method and mathematical induction. Moreover, the proposed second-order method can be easily extended into the fourth-order method by using an average finite difference operator for spatial fractional derivatives and Richardson extrapolation for time variable. Finally, numerical results are presented to confirm the theoretical results.

[1]  P. Holmes,et al.  Global existence theory for a generalized Ginzburg-Landau equation , 1992 .

[2]  P. Holmes,et al.  Regularity, approximation and asymptotic dynamics for a generalized Ginzburg-Landau equation , 1993 .

[3]  C. D. Levermore,et al.  Weak and strong solutions of the complex Ginzburg-Landau equation , 1994 .

[4]  Akhmediev,et al.  Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  G. Lord Attractors and Inertial Manifolds for Finite-Difference Approximations of the Complex Ginzburg--Landau Equation , 1997 .

[6]  I. Podlubny Fractional differential equations , 1998 .

[7]  Hongjun Gao,et al.  Asymptotics for the Generalized Two-Dimensional Ginzburg–Landau Equation , 2000 .

[8]  I. Aranson,et al.  The world of the complex Ginzburg-Landau equation , 2001, cond-mat/0106115.

[9]  B. Malomed,et al.  Stable solitons in coupled Ginzburg–Landau equations describing Bose–Einstein condensates and nonlinear optical waveguides and cavities , 2003, nlin/0306035.

[10]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[11]  I. Turner,et al.  Numerical Approximation of a Fractional-In-Space Diffusion Equation, I , 2005 .

[12]  J. Rasmussen,et al.  Fractional generalization of the Ginzburg–Landau equation: an unconventional approach to critical phenomena in complex media , 2003, cond-mat/0309577.

[13]  G. Zaslavsky,et al.  Fractional Ginzburg–Landau equation for fractal media , 2005, physics/0511144.

[14]  M. Meerschaert,et al.  Finite difference methods for two-dimensional fractional dispersion equation , 2006 .

[15]  Psi-series solution of fractional Ginzburg–Landau equation , 2006, nlin/0606070.

[16]  M. Meerschaert,et al.  Finite difference approximations for two-sided space-fractional partial differential equations , 2006 .

[17]  G. Zaslavsky,et al.  Fractional dynamics of coupled oscillators with long-range interaction. , 2005, Chaos.

[18]  Manuel Duarte Ortigueira,et al.  Riesz potential operators and inverses via fractional centred derivatives , 2006, Int. J. Math. Math. Sci..

[19]  B. Guo,et al.  The attractor of the stochastic generalized Ginzburg-Landau equation , 2008 .

[20]  Zhaohui Huo,et al.  Global well-posedness for the generalized 2D Ginzburg–Landau equation , 2009 .

[21]  Fawang Liu,et al.  Numerical Methods for the Variable-Order Fractional Advection-Diffusion Equation with a Nonlinear Source Term , 2009, SIAM J. Numer. Anal..

[22]  K. Porsezian,et al.  Modulational instability in linearly coupled complex cubic–quintic Ginzburg–Landau equations , 2009 .

[23]  I. Turner,et al.  Numerical methods for fractional partial differential equations with Riesz space fractional derivatives , 2010 .

[24]  Fawang Liu,et al.  Galerkin finite element approximation of symmetric space-fractional partial differential equations , 2010, Appl. Math. Comput..

[25]  Lei Zhang Long Time Behavior of Difference Approximations for the Two-Dimensional Complex Ginzburg–Landau Equation , 2010 .

[26]  Q. Chang,et al.  Difference methods for computing the Ginzburg‐Landau equation in two dimensions , 2011 .

[27]  B. Guo,et al.  Analysis of some finite difference schemes for two‐dimensional Ginzburg‐Landau equation , 2011 .

[28]  Fawang Liu,et al.  Novel Numerical Methods for Solving the Time-Space Fractional Diffusion Equation in Two Dimensions , 2011, SIAM J. Sci. Comput..

[29]  Cem Çelik,et al.  Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative , 2012, J. Comput. Phys..

[30]  B. Guo,et al.  Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg-Landau equation , 2012 .

[31]  Kun Zhou,et al.  Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..

[32]  O. Agrawal,et al.  Numerical solutions and analysis of diffusion for new generalized fractional Burgers equation , 2013 .

[33]  B. Guo,et al.  Well-posedness and dynamics for the fractional Ginzburg-Landau equation , 2013 .

[34]  Han Zhou,et al.  Quasi-Compact Finite Difference Schemes for Space Fractional Diffusion Equations , 2012, J. Sci. Comput..

[35]  Zhi‐zhong Sun,et al.  Convergence analysis of a linearized Crank–Nicolson scheme for the two‐dimensional complex Ginzburg–Landau equation , 2013 .

[36]  Zhaosheng Feng,et al.  Asymptotic Dynamics of 2D fractional Complex Ginzburg-Landau equation , 2013, Int. J. Bifurc. Chaos.

[37]  Wei Yang,et al.  Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative , 2013, J. Comput. Phys..

[38]  Chengming Huang,et al.  A conservative linearized difference scheme for the nonlinear fractional Schrödinger equation , 2014, Numerical Algorithms.

[39]  I. Turner,et al.  A novel numerical approximation for the space fractional advection-dispersion equation , 2014 .

[40]  Wei Yang,et al.  Maximum-norm error analysis of a difference scheme for the space fractional CNLS , 2015, Appl. Math. Comput..

[41]  V. Millot,et al.  On a Fractional Ginzburg–Landau Equation and 1/2-Harmonic Maps into Spheres , 2013, 1307.7015.

[42]  Chengming Huang,et al.  An energy conservative difference scheme for the nonlinear fractional Schrödinger equations , 2015, J. Comput. Phys..

[43]  E. Yomba,et al.  Modulational instability regions for coupled Ginzburg-Landau equations with higher order of nonlinearities. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Han Zhou,et al.  A class of second order difference approximations for solving space fractional diffusion equations , 2012, Math. Comput..

[45]  Zhi‐zhong Sun,et al.  A three‐level linearized compact difference scheme for the Ginzburg–Landau equation , 2015 .

[46]  Kejia Pan,et al.  A linearly implicit conservative difference scheme for the generalized Rosenau-Kawahara-RLW equation , 2015, Appl. Math. Comput..

[47]  Chengming Huang,et al.  An implicit midpoint difference scheme for the fractional Ginzburg-Landau equation , 2016, J. Comput. Phys..

[48]  Chengming Huang,et al.  Point-wise error estimate of a conservative difference scheme for the fractional Schrödinger equation , 2016, J. Comput. Appl. Math..

[49]  Antoine Tambue,et al.  Localized numerical impulse solutions in diffuse neural networks modeled by the complex fractional Ginzburg-Landau equation , 2014, Commun. Nonlinear Sci. Numer. Simul..

[50]  Chengjian Zhang,et al.  A linearly implicit conservative scheme for the fractional nonlinear Schrödinger equation with wave operator , 2016, Int. J. Comput. Math..

[51]  Zhi‐zhong Sun,et al.  A linearized high‐order difference scheme for the fractional Ginzburg–Landau equation , 2017 .