An Inexpensive Cognitive Approach for Bi-objective Optimization Using Bliss Points and Interaction

When an optimization problem encompasses multiple objectives, it is usually difficult to define optimality. The decision maker plays an important role when choosing the final single decision. Pareto-based evolutionary multiobjective optimization (EMO) methods are very informative for the decision making process since they provide the decision maker with a set of efficient solutions to choose from. Despite that this set may not be the global efficient set, we show in this paper that this set can still be informative within an interactive session with the decision maker. We use a combination of EMO and single objective optimization methods to guide the decision maker in interactive sessions.

[1]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[2]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[3]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[4]  E. L. Ulungu,et al.  MOSA method: a tool for solving multiobjective combinatorial optimization problems , 1999 .

[5]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[6]  Hussein A. Abbass,et al.  Speeding Up Backpropagation Using Multiobjective Evolutionary Algorithms , 2003, Neural Computation.

[7]  Milan Zeleny,et al.  Multiple criteria decision making: eight concepts of optimality , 1998 .

[8]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[9]  Hussein A. Abbass,et al.  The Pareto Differential Evolution Algorithm , 2002, Int. J. Artif. Intell. Tools.

[10]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[11]  Jeffrey Horn,et al.  The Niched Pareto Genetic Algorithm 2 Applied to the Design of Groundwater Remediation Systems , 2001, EMO.

[12]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[13]  Thomas Bäck,et al.  Evolutionary Algorithms in Theory and Practice , 1996 .

[14]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[15]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[16]  W. Hart Adaptive global optimization with local search , 1994 .

[17]  Filippo Menczer,et al.  Efficient and Scalable Pareto Optimization by Evolutionary Local Selection Algorithms , 2000, Evolutionary Computation.

[18]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[19]  John Buchanan,et al.  A naïve approach for solving MCDM problems: the GUESS method , 1997 .

[20]  P. Hajela,et al.  Genetic search strategies in multicriterion optimal design , 1991 .

[21]  Hisao Ishibuchi,et al.  Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling , 2003, IEEE Trans. Evol. Comput..

[22]  Tong Heng Lee,et al.  Evolutionary Algorithms for Multi-Objective Optimization: Performance Assessments and Comparisons , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[23]  Hussein A. Abbass Pareto Neuro-Ensembles , 2003, Australian Conference on Artificial Intelligence.