Set-based corral control in stochastic dynamical systems: making almost invariant sets more invariant.

We consider the problem of stochastic prediction and control in a time-dependent stochastic environment, such as the ocean, where escape from an almost invariant region occurs due to random fluctuations. We determine high-probability control-actuation sets by computing regions of uncertainty, almost invariant sets, and Lagrangian coherent structures. The combination of geometric and probabilistic methods allows us to design regions of control, which provide an increase in loitering time while minimizing the amount of control actuation. We show how the loitering time in almost invariant sets scales exponentially with respect to the control actuation, causing an exponential increase in loitering times with only small changes in actuation force. The result is that the control actuation makes almost invariant sets more invariant.

[1]  Ira B Schwartz,et al.  Phase-space transport of stochastic chaos in population dynamics of virus spread. , 2002, Physical review letters.

[2]  Jerrold E. Marsden,et al.  Lagrangian coherent structures in n-dimensional systems , 2007 .

[3]  Ira B. Schwartz,et al.  Extreme parametric uncertainty and instant chaos in coupled structural dynamics , 1999 .

[4]  Stephen Wiggins,et al.  Distinguished hyperbolic trajectories in time-dependent fluid flows: analytical and computational approach for velocity fields defined as data sets , 2002 .

[5]  D. C. Webb,et al.  SLOCUM: an underwater glider propelled by environmental energy , 2001 .

[6]  H. Risken Fokker-Planck Equation , 1996 .

[7]  George Haller,et al.  Experimental and numerical investigation of the kinematic theory of unsteady separation , 2008, Journal of Fluid Mechanics.

[8]  G. Froyland,et al.  Almost-invariant sets and invariant manifolds — Connecting probabilistic and geometric descriptions of coherent structures in flows , 2009 .

[9]  Uriel Frisch,et al.  Chaotic streamlines in the ABC flows , 1986, Journal of Fluid Mechanics.

[10]  G. Haller Lagrangian coherent structures from approximate velocity data , 2002 .

[11]  Kwitae Chong,et al.  Fluid transport and coherent structures of translating and flapping wings. , 2010, Chaos.

[12]  H. Aref Stirring by chaotic advection , 1984, Journal of Fluid Mechanics.

[13]  Raymond T. Pierrehumbert,et al.  Large-scale horizontal mixing in planetary atmospheres , 1991 .

[14]  Raymond T. Pierrehumbert,et al.  Global Chaotic Mixing on Isentropic Surfaces , 1993 .

[15]  Ira B. Schwartz,et al.  Global manifold control in a driven laser: sustaining chaos and regular dynamics , 2004 .

[16]  B. Luce,et al.  Global Bifurcation of Shilnikov Type in a Double-Gyre Ocean Model , 2001 .

[17]  Joseph Pedlosky,et al.  Ocean Circulation Theory , 1996 .

[18]  J. Yorke,et al.  Fractal basin boundaries , 1985 .

[19]  Antonello Provenzale,et al.  TRANSPORT BY COHERENT BAROTROPIC VORTICES , 1999 .

[20]  Stephen Wiggins,et al.  The dynamical systems approach to lagrangian transport in oceanic flows , 2005 .

[21]  Ira B Schwartz,et al.  Dynamical epidemic suppression using stochastic prediction and control. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  G. Haller Distinguished material surfaces and coherent structures in three-dimensional fluid flows , 2001 .

[23]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[24]  John Harlim,et al.  Convex error growth patterns in a global weather model. , 2005, Physical review letters.

[25]  S. Sharma,et al.  The Fokker-Planck Equation , 2010 .

[26]  George Haller,et al.  Accurate extraction of Lagrangian coherent structures over finite domains with application to flight data analysis over Hong Kong International Airport. , 2010, Chaos.

[27]  E. Bollt,et al.  A manifold independent approach to understanding transport in stochastic dynamical systems , 2002 .

[28]  Jie Li,et al.  Ligament formation in sheared liquid–gas layers , 2006 .

[29]  Len G. Margolin,et al.  Dispersive–Dissipative Eddy Parameterization in a Barotropic Model , 2001 .

[30]  Sarah R. Lukens,et al.  Using Lagrangian coherent structures to analyze fluid mixing by cilia. , 2010, Chaos.

[31]  G. Haller Finding finite-time invariant manifolds in two-dimensional velocity fields. , 2000, Chaos.

[32]  C. C. Eriksen,et al.  Seaglider: a long-range autonomous underwater vehicle for oceanographic research , 2001 .

[33]  S. Meacham,et al.  The dynamics of an equivalent-barotropic model of the wind-driven circulation , 1997 .

[34]  E. Villermaux,et al.  Ligament-mediated spray formation. , 2004, Physical review letters.

[35]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[36]  J. Marsden,et al.  Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows , 2005 .

[37]  J. Yorke,et al.  Final state sensitivity: An obstruction to predictability , 1983 .

[38]  Zhengyu Liu,et al.  Chaotic transport in a double gyre ocean , 1994 .

[39]  Eric Forgoston,et al.  Escape Rates in a Stochastic Environment with Multiple Scales , 2008, SIAM J. Appl. Dyn. Syst..

[40]  S. Wiggins,et al.  Finite-Time Lagrangian Transport Analysis: Stable and Unstable Manifolds of Hyperbolic Trajectories and Finite-Time Lyapunov Exponents , 2009, 0908.1129.

[41]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[42]  Eric Forgoston,et al.  Accurate noise projection for reduced stochastic epidemic models , 2009, Chaos.

[43]  R. Davis,et al.  The autonomous underwater glider "Spray" , 2001 .

[44]  S. Wiggins,et al.  An analytical study of transport, mixing and chaos in an unsteady vortical flow , 1990, Journal of Fluid Mechanics.

[45]  Y. Lai Extreme final state sensitivity in inhomogeneous spatiotemporal chaotic systems , 2002 .

[46]  Y. Lai,et al.  Extreme final state sensitivity in inhomogeneous spatiotemporal chaotic systems , 1994 .