What Can Machine Learning Approaches in Genomics Tell Us about the Molecular Basis of Amyotrophic Lateral Sclerosis?

Amyotrophic Lateral Sclerosis (ALS) is the most common late-onset motor neuron disorder, but our current knowledge of the molecular mechanisms and pathways underlying this disease remain elusive. This review (1) systematically identifies machine learning studies aimed at the understanding of the genetic architecture of ALS, (2) outlines the main challenges faced and compares the different approaches that have been used to confront them, and (3) compares the experimental designs and results produced by those approaches and describes their reproducibility in terms of biological results and the performances of the machine learning models. The majority of the collected studies incorporated prior knowledge of ALS into their feature selection approaches, and trained their machine learning models using genomic data combined with other types of mined knowledge including functional associations, protein-protein interactions, disease/tissue-specific information, epigenetic data, and known ALS phenotype-genotype associations. The importance of incorporating gene-gene interactions and cis-regulatory elements into the experimental design of future ALS machine learning studies is highlighted. Lastly, it is suggested that future advances in the genomic and machine learning fields will bring about a better understanding of ALS genetic architecture, and enable improved personalized approaches to this and other devastating and complex diseases.

[1]  John Q. Trojanowski,et al.  Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS , 2010, Nature.

[2]  J. Friedman Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .

[3]  C. Combs,et al.  Microglial Phenotype Is Regulated by Activity of the Transcription Factor, NFAT (Nuclear Factor of Activated T Cells) , 2010, The Journal of Neuroscience.

[4]  J. Rowe,et al.  Genetic screening in sporadic ALS and FTD , 2017, Journal of Neurology, Neurosurgery, and Psychiatry.

[5]  Annelot M. Dekker,et al.  Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis , 2017 .

[6]  J. Qin,et al.  The NEK1 interactor, C21ORF2, is required for efficient DNA damage repair. , 2015, Acta biochimica et biophysica Sinica.

[7]  F. Dudbridge Power and Predictive Accuracy of Polygenic Risk Scores , 2013, PLoS genetics.

[8]  Ole Winther,et al.  JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update , 2007, Nucleic Acids Res..

[9]  T. Hortobágyi,et al.  ALS mutant FUS disrupts nuclear localization and sequesters wild-type FUS within cytoplasmic stress granules , 2013, Human molecular genetics.

[10]  Janel O. Johnson,et al.  Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study , 2012, The Lancet Neurology.

[11]  G. de los Campos,et al.  Can Deep Learning Improve Genomic Prediction of Complex Human Traits? , 2018, Genetics.

[12]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[13]  Cheng Soon Ong,et al.  GWIS - model-free, fast and exhaustive search for epistatic interactions in case-control GWAS , 2013, BMC Genomics.

[14]  Min Jae Lee,et al.  The Proline/Arginine Dipeptide from Hexanucleotide Repeat Expanded C9ORF72 Inhibits the Proteasome , 2017, eNeuro.

[15]  Shin J. Oh,et al.  Mutant dynactin in motor neuron disease , 2003, Nature Genetics.

[16]  Adriano Chiò,et al.  State of play in amyotrophic lateral sclerosis genetics , 2013, Nature Neuroscience.

[17]  A. Morris,et al.  Data quality control in genetic case-control association studies , 2010, Nature Protocols.

[18]  Marylyn D. Ritchie,et al.  Imputation and quality control steps for combining multiple genome-wide datasets , 2014, Front. Genet..

[19]  Shane J. Neph,et al.  Systematic Localization of Common Disease-Associated Variation in Regulatory DNA , 2012, Science.

[20]  S. Bohté,et al.  Using the structure of genome data in the design of deep neural networks for predicting amyotrophic lateral sclerosis from genotype , 2019, bioRxiv.

[21]  K. N. Chandrika,et al.  Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets , 2006, Nature Genetics.

[22]  B. De Felice,et al.  A miRNA signature in leukocytes from sporadic amyotrophic lateral sclerosis. , 2012, Gene.

[23]  Luana Licata,et al.  The MIntAct Project and Molecular Interaction Databases. , 2016, Methods in molecular biology.

[24]  B. Traynor,et al.  Genome-wide association reveals three SNPs associated with sporadic amyotrophic lateral sclerosis through a two-locus analysis , 2009, BMC Medical Genetics.

[25]  Steffen Jung,et al.  Control of microglial neurotoxicity by the fractalkine receptor , 2006, Nature Neuroscience.

[26]  M. Swanson,et al.  RNA mis-splicing in disease , 2015, Nature Reviews Genetics.

[27]  C. Shaw,et al.  Familial amyotrophic lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to reduce axonal mitochondria content. , 2007, Human molecular genetics.

[28]  S. Cavallaro,et al.  Omics-based exploration and functional validation of neurotrophic factors and histamine as therapeutic targets in ALS , 2020, Ageing Research Reviews.

[29]  O. Hardiman,et al.  Clustering of Neuropsychiatric Disease in First-Degree and Second-Degree Relatives of Patients With Amyotrophic Lateral Sclerosis , 2017, JAMA neurology.

[30]  J. Marchini,et al.  Genotype imputation for genome-wide association studies , 2010, Nature Reviews Genetics.

[31]  R. Klein,et al.  Successes of Genome-wide Association Studies , 2010, Cell.

[32]  L. Martin,et al.  Mitochondrial DNMT3A and DNA methylation in skeletal muscle and CNS of transgenic mouse models of ALS , 2013, Front. Cell. Neurosci..

[33]  Sonja W. Scholz,et al.  Genome-wide genotyping in amyotrophic lateral sclerosis and neurologically normal controls: first stage analysis and public release of data , 2007, The Lancet Neurology.

[34]  A. Chiò,et al.  Projected increase in amyotrophic lateral sclerosis from 2015 to 2040 , 2016, Nature Communications.

[35]  Orla Hardiman,et al.  A genome-wide association study of sporadic ALS in a homogenous Irish population. , 2007, Human molecular genetics.

[36]  D. Timmann,et al.  Multisystemic SYNE1 ataxia: confirming the high frequency and extending the mutational and phenotypic spectrum. , 2016, Brain : a journal of neurology.

[37]  Vijay Kumar,et al.  Unraveling the Role of RNA Mediated Toxicity of C9orf72 Repeats in C9-FTD/ALS , 2017, Front. Neurosci..

[38]  Andries T Marees,et al.  A tutorial on conducting genome‐wide association studies: Quality control and statistical analysis , 2018, International journal of methods in psychiatric research.

[39]  M. Collins,et al.  TBK1: a new player in ALS linking autophagy and neuroinflammation , 2017, Molecular Brain.

[40]  Núria Queralt-Rosinach,et al.  DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants , 2016, Nucleic Acids Res..

[41]  A. Chiò,et al.  Global Epidemiology of Amyotrophic Lateral Sclerosis: A Systematic Review of the Published Literature , 2013, Neuroepidemiology.

[42]  Jason H. Moore,et al.  Chapter 11: Genome-Wide Association Studies , 2012, PLoS Comput. Biol..

[43]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..

[44]  J. Jakobsson,et al.  TRIM28 and the control of transposable elements in the brain , 2019, Brain Research.

[45]  Y. Kawahara,et al.  TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes , 2012, Proceedings of the National Academy of Sciences.

[46]  E. Lander,et al.  On the allelic spectrum of human disease. , 2001, Trends in genetics : TIG.

[47]  Robert H. Brown,et al.  Decoding ALS: from genes to mechanism , 2016, Nature.

[48]  K. Sirotkin,et al.  The NCBI dbGaP database of genotypes and phenotypes , 2007, Nature Genetics.

[49]  Min Kyung Sung,et al.  Convolutional neural network model to predict causal risk factors that share complex regulatory features , 2019, bioRxiv.

[50]  K. Van Steen,et al.  The search for gene-gene interactions in genome-wide association studies: challenges in abundance of methods, practical considerations, and biological interpretation. , 2018, Annals of translational medicine.

[51]  A. Al-Chalabi,et al.  A Knowledge-Based Machine Learning Approach to Gene Prioritisation in Amyotrophic Lateral Sclerosis , 2020, Genes.

[52]  S. Duguez,et al.  Molecular and Cellular Mechanisms Affected in ALS , 2020, Journal of personalized medicine.

[53]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[54]  F. Dudbridge,et al.  Estimation of significance thresholds for genomewide association scans , 2008, Genetic epidemiology.

[55]  Susumu Goto,et al.  The commonality of protein interaction networks determined in neurodegenerative disorders (NDDs) , 2007, Bioinform..

[56]  Xiang Hu,et al.  TNFAIP1 contributes to the neurotoxicity induced by Aβ25–35 in Neuro2a cells , 2016, BMC Neuroscience.

[57]  Carlo Sidore,et al.  Rare variant genotype imputation with thousands of study-specific whole-genome sequences: implications for cost-effective study designs , 2014, European Journal of Human Genetics.

[58]  Hui Xiong,et al.  K-Means-Based Consensus Clustering: A Unified View , 2015, IEEE Transactions on Knowledge and Data Engineering.

[59]  T. Reich,et al.  A perspective on epistasis: limits of models displaying no main effect. , 2002, American journal of human genetics.

[60]  F. Dudbridge Correction: Power and Predictive Accuracy of Polygenic Risk Scores , 2013, PLoS Genetics.

[61]  Jason H. Moore,et al.  Multifactor dimensionality reduction for graphics processing units enables genome-wide testing of epistasis in sporadic ALS , 2010, Bioinform..

[62]  John W Griffin,et al.  DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). , 2004, American journal of human genetics.

[63]  Patricia B. Munroe,et al.  Reaching the End-Game for GWAS: Machine Learning Approaches for the Prioritization of Complex Disease Loci , 2020, Frontiers in Genetics.

[64]  Alan M. Kwong,et al.  A reference panel of 64,976 haplotypes for genotype imputation , 2015, Nature Genetics.

[65]  O. Hardiman,et al.  Aggregation of neurologic and neuropsychiatric disease in amyotrophic lateral sclerosis kindreds: A population‐based case–control cohort study of familial and sporadic amyotrophic lateral sclerosis , 2013, Annals of neurology.

[66]  J. H. Moore,et al.  Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. , 2001, American journal of human genetics.

[67]  Ting Hu,et al.  Epistasis, complexity, and multifactor dimensionality reduction. , 2013, Methods in molecular biology.

[68]  M. Ritchie Using Biological Knowledge to Uncover the Mystery in the Search for Epistasis in Genome‐Wide Association Studies , 2011, Annals of human genetics.

[69]  Bilal Mirza,et al.  Machine Learning and Integrative Analysis of Biomedical Big Data , 2019, Genes.

[70]  Joris M. Mooij,et al.  MAGMA: Generalized Gene-Set Analysis of GWAS Data , 2015, PLoS Comput. Biol..

[71]  Claire Cardie,et al.  Proceedings of the Eighteenth International Conference on Machine Learning, 2001, p. 577–584. Constrained K-means Clustering with Background Knowledge , 2022 .

[72]  Frank W. Stearns One Hundred Years of Pleiotropy: A Retrospective , 2010, Genetics.

[73]  S. Duguez,et al.  A Systematic Review of Genotype–Phenotype Correlation across Cohorts Having Causal Mutations of Different Genes in ALS , 2020, Journal of personalized medicine.

[74]  Suzanna Lewis,et al.  Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium , 2011, Briefings Bioinform..

[75]  E. Beghi,et al.  Prognostic factors in ALS: A critical review , 2009, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[76]  F. Benfenati,et al.  Abnormal exocytotic release of glutamate in a mouse model of amyotrophic lateral sclerosis , 2011, Journal of neurochemistry.

[77]  J. Lipski,et al.  GluR2 AMPA Receptor Subunit Expression in Motoneurons at Low and High Risk for Degeneration in Amyotrophic Lateral Sclerosis , 2001, Experimental Neurology.

[78]  A. Bjourson,et al.  A Systematic Review of Suggested Molecular Strata, Biomarkers and Their Tissue Sources in ALS , 2019, Front. Neurol..

[79]  A. Spiro,et al.  Respiratory failure in amyotrophic lateral sclerosis. , 1984, New York state journal of medicine.

[80]  J. Collinge,et al.  ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B) , 2006, Neurology.

[81]  R. Ransohoff,et al.  The myeloid cells of the central nervous system parenchyma , 2010, Nature.

[82]  Xiang Hu,et al.  TNFAIP 1 contributes to the neurotoxicity induced by Aβ 25 – 35 in Neuro 2 a cells , 2016 .

[83]  Jason H. Moore,et al.  Gene ontology analysis of pairwise genetic associations in two genome-wide studies of sporadic ALS , 2012, BioData Mining.

[84]  P. Andersen,et al.  NEK1 loss-of-function mutation induces DNA damage accumulation in ALS patient-derived motoneurons. , 2018, Stem cell research.

[85]  M. Vidal,et al.  New insights into the function of Rab GTPases in the context of exosomal secretion , 2017, Small GTPases.

[86]  D. Borchelt,et al.  Messenger RNA Oxidation Occurs Early in Disease Pathogenesis and Promotes Motor Neuron Degeneration in ALS , 2008, PloS one.

[87]  Min Kyung Sung,et al.  Functional fine-mapping of noncoding risk variants in amyotrophic lateral sclerosis utilizing convolutional neural network , 2020, Scientific Reports.

[88]  K. Borgwardt,et al.  Machine Learning in Medicine , 2015, Mach. Learn. under Resour. Constraints Vol. 3.

[89]  L. Foster,et al.  CNS-derived extracellular vesicles from superoxide dismutase 1 (SOD1)G93A ALS mice originate from astrocytes and neurons and carry misfolded SOD1 , 2019, The Journal of Biological Chemistry.

[90]  M. Marazita,et al.  Genome-wide Association Studies , 2012, Journal of dental research.

[91]  O. Hardiman,et al.  Heritability of Amyotrophic Lateral Sclerosis: Insights From Disparate Numbers. , 2015, JAMA neurology.

[92]  J. Rothstein,et al.  Altered expression of the glutamate transporter EAAT2b in neurological disease , 2004, Annals of neurology.

[93]  Ammar Al-Chalabi,et al.  Clinical genetics of amyotrophic lateral sclerosis: what do we really know? , 2011, Nature Reviews Neurology.

[94]  S. Raghav,et al.  TRIM16 controls assembly and degradation of protein aggregates by modulating the p62‐NRF2 axis and autophagy , 2018, The EMBO journal.

[95]  Amrita Chattopadhyay,et al.  Gene-gene interaction: the curse of dimensionality. , 2019, Annals of translational medicine.

[96]  M. Ruepp,et al.  The emerging role of minor intron splicing in neurological disorders , 2018, Cell stress.

[97]  Nam Jin Yoo,et al.  Laminin gene LAMB4 is somatically mutated and expressionally altered in gastric and colorectal cancers , 2015, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[98]  P. Andersen,et al.  Current knowledge and recent insights into the genetic basis of amyotrophic lateral sclerosis , 2018, medizinische genetik.

[99]  T. Cech,et al.  FUS binds the CTD of RNA polymerase II and regulates its phosphorylation at Ser2. , 2012, Genes & development.

[100]  E. Lander,et al.  The mystery of missing heritability: Genetic interactions create phantom heritability , 2012, Proceedings of the National Academy of Sciences.

[101]  Daniel Neil,et al.  Applications of machine learning to diagnosis and treatment of neurodegenerative diseases , 2020, Nature Reviews Neurology.

[102]  N. Wray,et al.  Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance components analysis , 2015, Nature Genetics.

[103]  Peter Kraft,et al.  Quality control and quality assurance in genotypic data for genome‐wide association studies , 2010, Genetic epidemiology.

[104]  A. Ludolph,et al.  Amyotrophic lateral sclerosis. , 2012, Current opinion in neurology.

[105]  R. Myers Huntington’s disease genetics , 2004, NeuroRX.

[106]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[107]  Olubunmi Abel,et al.  ALSoD: A user‐friendly online bioinformatics tool for amyotrophic lateral sclerosis genetics , 2012, Human mutation.

[108]  I. Ferrer,et al.  Amyotrophic lateral sclerosis, gene deregulation in the anterior horn of the spinal cord and frontal cortex area 8: implications in frontotemporal lobar degeneration , 2017, Aging.

[109]  G. Ebers,et al.  Epistasis , 2015, Methods in Molecular Biology.

[110]  Lorne Zinman,et al.  Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis , 2014, Nature Neuroscience.

[111]  G. Rouleau,et al.  Genetics of motor neuron disorders: new insights into pathogenic mechanisms , 2009, Nature Reviews Genetics.

[112]  Yoav Freund,et al.  A Short Introduction to Boosting , 1999 .

[113]  W. Johnson,et al.  Familial aggregation of amyotrophic lateral sclerosis, dementia, and Parkinson's disease , 1994, Neurology.

[114]  Tudor Groza,et al.  The Human Phenotype Ontology in 2017 , 2016, Nucleic Acids Res..

[115]  Dimitrios Vitsios,et al.  Mantis-ml: Disease-Agnostic Gene Prioritization from High-Throughput Genomic Screens by Stochastic Semi-supervised Learning , 2020, American journal of human genetics.

[116]  Steve Epstein,et al.  Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease , 2017, Nature Genetics.

[117]  Aberrant Regulation of DNA Methylation in Amyotrophic Lateral Sclerosis: A New Target of Disease Mechanisms , 2013, Neurotherapeutics.

[118]  A. Singleton,et al.  Repeat expansion in C9ORF72 in Alzheimer's disease. , 2012, The New England journal of medicine.

[119]  J. Dubnau,et al.  Transposable Elements in TDP-43-Mediated Neurodegenerative Disorders , 2012, PloS one.

[120]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[121]  M. Marinkovich,et al.  Bridging structure with function: structural, regulatory, and developmental role of laminins. , 2008, The international journal of biochemistry & cell biology.

[122]  Quanshi Zhang,et al.  Visual interpretability for deep learning: a survey , 2018, Frontiers of Information Technology & Electronic Engineering.

[123]  Rafael C. Jimenez,et al.  The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases , 2013, Nucleic Acids Res..

[124]  S. Duguez,et al.  Personalized Medicine and Molecular Interaction Networks in Amyotrophic Lateral Sclerosis (ALS): Current Knowledge , 2018, Journal of personalized medicine.

[125]  O. Stegle,et al.  Deep learning for computational biology , 2016, Molecular systems biology.

[126]  F. Pasquier,et al.  C9orf72 repeat expansions are a rare genetic cause of parkinsonism. , 2013, Brain : a journal of neurology.

[127]  S. Elena,et al.  The causes of epistasis , 2011, Proceedings of the Royal Society B: Biological Sciences.

[128]  Deanna M. Church,et al.  ClinVar: public archive of relationships among sequence variation and human phenotype , 2013, Nucleic Acids Res..

[129]  Alexander E. Kel,et al.  TRANSFAC®: transcriptional regulation, from patterns to profiles , 2003, Nucleic Acids Res..

[130]  Helen E. Parkinson,et al.  The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog) , 2016, Nucleic Acids Res..

[131]  C. Emiliani,et al.  Lysosomal Exocytosis, Exosome Release and Secretory Autophagy: The Autophagic- and Endo-Lysosomal Systems Go Extracellular , 2020, International journal of molecular sciences.

[132]  Timothy A. Miller,et al.  Genome-wide Analyses Identify KIF5A as a Novel ALS Gene in and for Therapeutic , 2018 .

[133]  V. Meininger,et al.  Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: a reappraisal using a new HPLC method with coulometric detection in a large cohort of patients , 2002, Journal of the Neurological Sciences.

[134]  M. Mesulam,et al.  FUS Interacts with HSP60 to Promote Mitochondrial Damage , 2015, PLoS genetics.

[135]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[136]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[137]  Peter Langfelder,et al.  Weighted gene co-expression network analysis of the peripheral blood from Amyotrophic Lateral Sclerosis patients , 2009, BMC Genomics.

[138]  Raymond Walters,et al.  Significant Locus and Metabolic Genetic Correlations Revealed in Genome-Wide Association Study of Anorexia Nervosa. , 2017, The American journal of psychiatry.

[139]  R. Pochet,et al.  Brain and spinal cord affected by amyotrophic lateral sclerosis induce differential growth factors expression in rat mesenchymal and neural stem cells , 2011, Neuropathology and applied neurobiology.

[140]  Zina M. Ibrahim,et al.  Knowledge graph prediction of unknown adverse drug reactions and validation in electronic health records , 2017, Scientific Reports.

[141]  A. Al-Chalabi,et al.  An estimate of amyotrophic lateral sclerosis heritability using twin data , 2010, Journal of Neurology, Neurosurgery & Psychiatry.

[142]  Amina Adadi,et al.  Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) , 2018, IEEE Access.

[143]  Minoru Kanehisa,et al.  KEGG: new perspectives on genomes, pathways, diseases and drugs , 2016, Nucleic Acids Res..

[144]  J. Milbrandt,et al.  Abnormal Microglia and Enhanced Inflammation-Related Gene Transcription in Mice with Conditional Deletion of Ctcf in Camk2a-Cre-Expressing Neurons , 2017, The Journal of Neuroscience.

[145]  A. Chiò,et al.  Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications , 2018, The Lancet Neurology.

[146]  A. Al-Chalabi,et al.  Gene discovery in amyotrophic lateral sclerosis: implications for clinical management , 2017, Nature Reviews Neurology.

[147]  Naomi R. Wray,et al.  Project MinE: study design and pilot analyses of a large-scale whole-genome sequencing study in amyotrophic lateral sclerosis , 2018, European Journal of Human Genetics.

[148]  Ferat Sahin,et al.  A survey on feature selection methods , 2014, Comput. Electr. Eng..

[149]  Mendel's Principles of Heredity: a Defence Reports to the Evolution Committee of the Royal Society , 1902, Nature.

[150]  C. Haley,et al.  An Evolutionary Perspective on Epistasis and the Missing Heritability , 2013, PLoS genetics.

[151]  O. Andreassen,et al.  Selective Genetic Overlap Between Amyotrophic Lateral Sclerosis and Diseases of the Frontotemporal Dementia Spectrum , 2018, JAMA neurology.

[152]  Y. Bossé,et al.  Benefits and limitations of genome-wide association studies , 2019, Nature Reviews Genetics.

[153]  Jean-Pierre Bouchard,et al.  Replication study of MATR3 in familial and sporadic amyotrophic lateral sclerosis , 2016, Neurobiology of Aging.

[154]  F. Sanz,et al.  The DisGeNET knowledge platform for disease genomics: 2019 update , 2019, Nucleic Acids Res..

[155]  Zhi-rui Zhou,et al.  Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta-analysis , 2017, Journal of Neurology, Neurosurgery & Psychiatry.

[156]  N. Shneider,et al.  Antisense Proline-Arginine RAN Dipeptides Linked to C9ORF72-ALS/FTD Form Toxic Nuclear Aggregates that Initiate In Vitro and In Vivo Neuronal Death , 2014, Neuron.

[157]  Lei Zhan,et al.  LAMB3 mediates apoptotic, proliferative, invasive, and metastatic behaviors in pancreatic cancer by regulating the PI3K/Akt signaling pathway , 2019, Cell Death & Disease.

[158]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection , 2018, J. Open Source Softw..

[159]  P. Andersen,et al.  Changes in the Spinal Cord Proteome of an Amyotrophic Lateral Sclerosis Murine Model Determined by Differential In-gel Electrophoresis* , 2009, Molecular & Cellular Proteomics.