A randomized version of Ramsey's theorem

The standard randomization of Ramsey's theorem asks for a fixed graph F and a fixed number r of colors: for what densities p = p(n) can we asymptotically almost surely color the edges of the random graph G(n, p) with r colors without creating a monochromatic copy of F. This question was solved in full generality by Rodl and Rucinski [Combinatorics, Paul Erdős is eighty, vol. 1, 1993, 317–346; J Am Math Soc 8(1995), 917–942]. In this paper we consider a different randomization that was recently suggested by Allen et al. [Random Struct Algorithms, in press]. Let \documentclass{article} \usepackage{amsmath,amsfonts} \pagestyle{empty} \begin{document}${{\mathcal R}_F(n,q)}$\end{document} **image** be a random subset of all copies of F on a vertex set Vn of size n, in which every copy is present independently with probability q. For which functions q = q(n) can we color the edges of the complete graph on Vn with r colors such that no monochromatic copy of F is contained in \documentclass{article} \usepackage{amsmath,amsfonts} \pagestyle{empty} \begin{document}${{\mathcal R}_F(n,q)}$\end{document} **image** ? We answer this question for strictly 2-balanced graphs F. Moreover, we combine bsts an r-edge-coloring of G(n, p)oth randomizations and prove a threshold result for the property that there exi such that no monochromatic copy of F is contained in \documentclass{article} \usepackage{amsmath,amsfonts} \pagestyle{empty} \begin{document}${{\mathcal R}_F(n,q)}$\end{document} **image** . © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2012 © 2012 Wiley Periodicals, Inc.

[1]  Andrzej Rucinski,et al.  Ramsey properties of random graphs , 1992, J. Comb. Theory, Ser. B.

[2]  B. Bollobás The evolution of random graphs , 1984 .

[3]  Michael Krivelevich,et al.  Sharp thresholds for certain Ramsey properties of random graphs , 2000, Random Struct. Algorithms.

[4]  V. Rödl,et al.  Ramsey properties of random discrete structures , 2010 .

[5]  Vojtech Rödl,et al.  Random Graphs with Monochromatic Triangles in Every Edge Coloring , 1994, Random Struct. Algorithms.

[6]  W. T. Gowers,et al.  Combinatorial theorems in sparse random sets , 2010, 1011.4310.

[7]  V. Rödl,et al.  Threshold functions for Ramsey properties , 1995 .

[8]  Vojtech Rödl,et al.  A sharp threshold for random graphs with a monochromatic triangle in every edge coloring , 2006, Memoirs of the American Mathematical Society.

[9]  Vojtech Rödl,et al.  Ramsey Properties of Random Hypergraphs , 1998, J. Comb. Theory, Ser. A.

[10]  Jan Hladký,et al.  Turánnical hypergraphs , 2010, Random Struct. Algorithms.

[11]  S. Janson,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[12]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[13]  Vojtech Rödl,et al.  Ramsey Properties of Random k-Partite, k-Uniform Hypergraphs , 2007, SIAM J. Discret. Math..

[14]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[15]  J. Spencer Ramsey Theory , 1990 .

[16]  Angelika Steger,et al.  Threshold Functions for Asymmetric Ramsey Properties Involving Cliques , 2006, APPROX-RANDOM.