Using Neural Networks for real-world adaptive Control

[1]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[2]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[3]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[4]  Snehasis Mukhopadhyay,et al.  Adaptive control of nonlinear multivariable systems using neural networks , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[5]  Madan M. Gupta,et al.  On the principles of fuzzy neural networks , 1994 .

[6]  Karsten Berns,et al.  Reinforcement-learning For The Control Of An Autonomous Mobile Robot , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[7]  James S. Albus,et al.  I A New Approach to Manipulator Control: The I Cerebellar Model Articulation Controller , 1975 .

[8]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[9]  Richard S. Sutton,et al.  Online Learning with Random Representations , 1993, ICML.

[10]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Michael I. Jordan,et al.  Learning to Control an Unstable System with Forward Modeling , 1989, NIPS.

[12]  Michael R. Berthold,et al.  A time delay radial basis function network for phoneme recognition , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[13]  Carme Torras Neural Learning for Robot Control , 1994, ECAI.

[14]  Geoffrey E. Hinton,et al.  Phoneme recognition using time-delay neural networks , 1989, IEEE Trans. Acoust. Speech Signal Process..

[15]  Hamid R. Berenji,et al.  A reinforcement learning--based architecture for fuzzy logic control , 1992, Int. J. Approx. Reason..

[16]  Ronald J. Williams,et al.  A Learning Algorithm for Continually Running Fully Recurrent Neural Networks , 1989, Neural Computation.

[17]  Peter Weckesser,et al.  PRIAMOS: An Advanced Moblie System for Service, Inspection, and Surveillance Tasks , 1994, Modelling and Planning for Sensor Based Intelligent Robot Systems.

[18]  V. Gullapalli,et al.  Acquiring robot skills via reinforcement learning , 1994, IEEE Control Systems.

[19]  M. Kaiser,et al.  Time-delay neural networks for control , 1994 .

[20]  Eduardo D. Sontag,et al.  Neural Networks for Control , 1993 .

[21]  Karsten Berns,et al.  A learning architecture based on reinforcement learning for adaptive control of the walking machine LAURON , 1995, Robotics Auton. Syst..

[22]  Holk Cruse Coordination of leg movement in walking animals , 1991 .

[23]  D. Pomerleau Eecient T Raining of Artiicial Neural Networks for Autonomous Navigation , 1991 .

[24]  Wolfram Schiffmann,et al.  Adaptive control of dynamic systems by back propagation networks , 1993, Neural Networks.

[25]  R. Dillmann,et al.  Designing neural networks for adaptive control , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.