A modified Lagrange–Galerkin method for a fluid-rigid system with discontinuous density

In this paper, we propose a new characteristics method for the discretization of the two dimensional fluid-rigid body problem in the case where the densities of the fluid and the solid are different. The method is based on a global weak formulation involving only terms defined on the whole fluid-rigid domain. To take into account the material derivative, we construct a special characteristic function which maps the approximate rigid body at the (k + 1)-th discrete time level into the approximate rigid body at k-th time. Convergence results are proved for both semi-discrete and fully-discrete schemes.

[1]  G. Legendre,et al.  Convergence of a Lagrange-Galerkin method for a fluid-rigid body system in ALE formulation , 2008 .

[2]  P. Lions,et al.  Ordinary differential equations, transport theory and Sobolev spaces , 1989 .

[3]  Yvon Maday,et al.  NUMERICAL ANALYSIS OF SOME DECOUPLING TECHNIQUES FOR THE APPROXIMATION OF THE UNSTEADY FLUID STRUCTURE INTERACTION , 2001 .

[4]  R. Glowinski,et al.  A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow , 2001 .

[5]  V. Arnold,et al.  Ordinary Differential Equations , 1973 .

[6]  B. Maury Regular Article: Direct Simulations of 2D Fluid-Particle Flows in Biperiodic Domains , 1999 .

[8]  Bertrand Maury,et al.  Fluid-particle flow: a symmetric formulation , 1997 .

[9]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[10]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[11]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[12]  Marius Tucsnak,et al.  An Initial and Boundary Value Problem Modeling of Fish-like Swimming , 2008 .

[13]  Jean-Luc Guermond,et al.  Convergence Analysis of a Finite Element Projection/Lagrange-Galerkin Method for the Incompressible Navier-Stokes Equations , 2000, SIAM J. Numer. Anal..

[14]  Marius Tucsnak,et al.  Convergence of the Lagrange-Galerkin Method for the Equations Modelling the Motion of a Fluid-Rigid System , 2005, SIAM J. Numer. Anal..

[15]  B. Maury Direct Simulations of 2 D Fluid – Particle Flows in Biperiodic Domains , 2022 .

[16]  R. Temam,et al.  Problèmes mathématiques en plasticité , 1983 .

[17]  Fabio Nobile,et al.  A Stability Analysis for the Arbitrary Lagrangian Eulerian Formulation with Finite Elements , 1999 .

[18]  Loredana Smaranda,et al.  Convergence of a finite element/ALE method for the Stokes equations in a domain depending on time , 2009 .

[19]  Lucia Gastaldi,et al.  A priori error estimates for the Arbitrary Lagrangian Eulerian formulation with finite elements , 2001, J. Num. Math..

[20]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[21]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[22]  Jacques Periaux,et al.  A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow , 2000 .

[23]  O. Pironneau On the transport-diffusion algorithm and its applications to the Navier-Stokes equations , 1982 .

[24]  Endre Süli,et al.  Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations , 1988 .

[25]  Takéo Takahashi,et al.  Numerical Analysis Convergence of the Lagrange-Galerkin method for a fluid-rigid system ✩ , 2004 .

[26]  R. Glowinski,et al.  A distributed Lagrange multiplier / ® ctitious domain method for the simulation of ̄ ow around moving rigid bodies : application to particulate , 2000 .

[27]  C. Peskin Acta Numerica 2002: The immersed boundary method , 2002 .