Kernel aggregation functions on finite scales. Constructions from their marginals
暂无分享,去创建一个
[1] Mariano Eriz. Aggregation Functions: A Guide for Practitioners , 2010 .
[2] Radko Mesiar,et al. Characterization of invariant aggregation operators , 2004, Fuzzy Sets Syst..
[3] Anna Kolesárová,et al. Extension to copulas and quasi-copulas as special 1-Lipschitz aggregation operators , 2005, Kybernetika.
[4] G. Mayor,et al. Triangular norms on discrete settings , 2005 .
[5] Joan Torrens,et al. On left and right uninorms on a finite chain , 2004, EUSFLAT Conf..
[6] Joan Torrens,et al. Smooth t-subnorms on finite scales , 2011, Fuzzy Sets Syst..
[7] Anna Kolesárová,et al. Kernel aggregation operators and their marginals , 2004, Fuzzy Sets Syst..
[8] Joan Torrens,et al. Copula-like operations on finite settings , 2005, IEEE Transactions on Fuzzy Systems.
[9] Tomasa Calvo,et al. Shift invariant binary aggregation operators , 2004, Fuzzy Sets Syst..
[10] Vicenç Torra,et al. Modeling decisions - information fusion and aggregation operators , 2007 .
[11] Bernard De Baets,et al. Idempotent uninorms on Finite Ordinal Scales , 2009, Int. J. Uncertain. Fuzziness Knowl. Based Syst..
[12] János C. Fodor,et al. Smooth associative operations on finite ordinal scales , 2000, IEEE Trans. Fuzzy Syst..
[13] R. Mesiar,et al. Aggregation Functions (Encyclopedia of Mathematics and its Applications) , 2009 .
[14] Joan Torrens,et al. Matrix representation of discrete quasi-copulas , 2008, Fuzzy Sets Syst..
[15] Radko Mesiar,et al. A complete description of comparison meaningful functions , 2005, EUSFLAT Conf..
[16] Radko Mesiar,et al. Weighted ordinal means , 2007, Inf. Sci..
[17] Anna Kolesárová,et al. 1-Lipschitz aggregation operators and quasi-copulas , 2003, Kybernetika.
[18] R. Mesiar,et al. Aggregation Functions: Aggregation on ordinal scales , 2009 .
[19] K. S. Fu,et al. AN AXIOMATIC APPROACH TO RATIONAL DECISION MAKING IN A FUZZY ENVIRONMENT , 1975 .
[20] Jana Kalická. On some construction methods for 1-Lipschitz aggregation functions , 2009, Fuzzy Sets Syst..
[21] Joan Torrens,et al. Smooth Aggregation Functions on Finite Scales , 2010, IPMU.
[22] Anna Kolesárová,et al. Construction of Kernel Aggregation Operators from Marginal Values , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..
[23] G. Mayor,et al. t‐Operators and uninorms on a finite totally ordered set , 1999 .
[24] Radko Mesiar,et al. Stability of aggregation operators , 2001, EUSFLAT Conf..