Formation mechanism and properties of CdS-Ag2S nanorod superlattices.

The mechanism of formation of recently fabricated CdS-Ag(2)S nanorod superlattices is considered and their elastic properties are predicted theoretically based on experimental structural data. We consider different possible mechanisms for the spontaneous ordering observed in these 1D nanostructures, such as diffusion-limited growth and ordering due to epitaxial strain. A simplified model suggests that diffusion-limited growth partially contributes to the observed ordering, but cannot account for the full extent of the ordering alone. The elastic properties of bulk Ag(2)S are predicted using a first principles method and are fed into a classical valence force field (VFF) model of the nanostructure. The VFF results show significant repulsion between Ag(2)S segments, strongly suggesting that the interplay between the chemical interface energy and strain due to the lattice mismatch between the two materials drives the spontaneous pattern formation.

[1]  A. J. Williamson,et al.  COMPARISON OF TWO METHODS FOR DESCRIBING THE STRAIN PROFILES IN QUANTUM DOTS , 1997, cond-mat/9711126.

[2]  Elif Ertekin,et al.  Equilibrium limits of coherency in strained nanowire heterostructures , 2005 .

[3]  Lars Samuelson,et al.  One-dimensional steeplechase for electrons realized , 2002 .

[4]  M. Shim,et al.  Permanent dipole moment and charges in colloidal semiconductor quantum dots , 1999 .

[5]  Yadong Yin,et al.  Cation Exchange Reactions in Ionic Nanocrystals , 2004, Science.

[6]  Niclas Carlsson,et al.  Mean-Field Theory of Quantum Dot Formation , 1997 .

[7]  R. Nötzel,et al.  Self-organized growth of quantum-dot structures , 1996 .

[8]  Hongkun Park,et al.  Catalyst-assisted solution-liquid-solid synthesis of CdS/CdSe nanorod heterostructures. , 2007, Journal of the American Chemical Society.

[9]  Olle Eriksson,et al.  Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2 , 1998 .

[10]  Peidong Yang,et al.  Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires , 2002 .

[11]  Dieter Bimberg,et al.  Spontaneous ordering of nanostructures on crystal surfaces , 1999 .

[12]  M. Lagally,et al.  Self-organization in growth of quantum dot superlattices. , 1996, Physical review letters.

[13]  Sharon C. Glotzer,et al.  Simulation Study of Dipole-Induced Self-Assembly of Nanocubes , 2007 .

[14]  A Paul Alivisatos,et al.  Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution , 2005, Science.

[15]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[16]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[17]  H. Schmalzried Ag2S—The physical chemistry of an inorganic material , 1980 .

[18]  Lin-Wang Wang,et al.  Spontaneous Superlattice Formation in Nanorods Through Partial Cation Exchange , 2007, Science.

[19]  James A. Corll,et al.  Effect of Pressure on the Elastic Parameters and Structure of CdS , 1967 .

[20]  Stress and dislocations at cross-sectional heterojunctions in a cylindrical nanowire , 2004 .

[21]  Kyung-Sang Cho,et al.  Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. , 2005, Journal of the American Chemical Society.

[22]  G. Capellini,et al.  Self-ordering of a Ge island single layer induced by Si overgrowth. , 2006, Physical review letters.

[23]  A Paul Alivisatos,et al.  Millisecond kinetics of nanocrystal cation exchange using microfluidic X-ray absorption spectroscopy. , 2007, The journal of physical chemistry. A.

[24]  Tamás Vicsek,et al.  Pattern Formation in Diffusion-Limited Aggregation , 1984 .

[25]  So,et al.  Stacking InAs islands and GaAs layers: Strongly modulated one‐dimensional electronic systems , 1996 .

[26]  Chen,et al.  Structural Transition in Large-Lattice-Mismatch Heteroepitaxy. , 1996, Physical review letters.

[27]  Zhiyong Tang,et al.  Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires , 2002, Science.

[28]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[29]  P. Junod,et al.  METAL-NON-METAL TRANSITION IN SILVER CHALCOGENIDES , 1976 .

[30]  Darryl L. Smith,et al.  Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well , 2004, Nature.

[31]  Weihua Tang,et al.  Crystal structure and magnetism of LaCo13−x−yFexSiy compounds , 1996 .

[32]  A. Zunger,et al.  Theoretical interpretation of the experimental electronic structure of lens shaped, self-assembled InAs/GaAs quantum dots , 2000, cond-mat/0003055.

[33]  Lin-wang Wang,et al.  First principle thousand atom quantum dot calculations , 2004 .

[34]  Lin-Wang Wang,et al.  Colloidal nanocrystal heterostructures with linear and branched topology , 2004, Nature.

[35]  A. P. Alivisatos,et al.  Origin and scaling of the permanent dipole moment in CdSe nanorods. , 2003, Physical review letters.

[36]  H. Woodbury Diffusion of Cd in CdS , 1964 .

[37]  M. S. Sadigov,et al.  The effect of Ag photodiffusion on characteristics of Ag-CdS diode structures , 1999 .

[38]  Baba,et al.  Cellular Automaton Model for Random Walkers. , 1996, Physical review letters.

[39]  Dulos,et al.  Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. , 1990, Physical review letters.

[40]  Kobayashi,et al.  Vertically self-organized InAs quantum box islands on GaAs(100). , 1995, Physical review letters.