Synchronization for coupled networks with Markov switching: ergodicity and $$M$$ -matrix method

[1]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[2]  Mihailo R. Jovanovic,et al.  Sparsity-promoting optimal control of consensus and synchronization networks , 2014, 2014 American Control Conference.

[3]  Florian Dörfler,et al.  Exploring synchronization in complex oscillator networks , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[4]  Jinde Cao,et al.  Stochastic quasi-synchronization for delayed dynamical networks via intermittent control , 2012 .

[5]  Bo Liu,et al.  Synchronization in Complex Networks With Stochastically Switching Coupling Structures , 2012, IEEE Transactions on Automatic Control.

[6]  Bo Liu,et al.  Consensus in Networks of Multiagents with Switching Topologies Modeled as Adapted Stochastic Processes , 2011, SIAM J. Control. Optim..

[7]  Zidong Wang,et al.  Bounded $H_{\infty}$ Synchronization and State Estimation for Discrete Time-Varying Stochastic Complex Networks Over a Finite Horizon , 2011, IEEE Transactions on Neural Networks.

[8]  Jinde Cao,et al.  A unified synchronization criterion for impulsive dynamical networks , 2010, Autom..

[9]  Daniel W. C. Ho,et al.  Globally Exponential Synchronization and Synchronizability for General Dynamical Networks , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[10]  Alireza Tahbaz-Salehi,et al.  Consensus Over Ergodic Stationary Graph Processes , 2010, IEEE Transactions on Automatic Control.

[11]  Guanrong Chen,et al.  Synchronization of delayed chaotic systems with parameter mismatches by using intermittent linear state feedback , 2009 .

[12]  Maurizio Porfiri,et al.  Criteria for global pinning-controllability of complex networks , 2008, Autom..

[13]  Wei Ren,et al.  Synchronization of coupled harmonic oscillators with local interaction , 2008, Autom..

[14]  Manfeng Hu,et al.  Adaptive feedback controller for projective synchronization , 2008 .

[15]  Alireza Tahbaz-Salehi,et al.  A Necessary and Sufficient Condition for Consensus Over Random Networks , 2008, IEEE Transactions on Automatic Control.

[16]  Tianping Chen,et al.  Pinning Complex Networks by a Single Controller , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[18]  Jun-an Lu,et al.  Adaptive synchronization of an uncertain complex dynamical network , 2005, IEEE Transactions on Automatic Control.

[19]  Erik M. Bollt,et al.  Sufficient Conditions for Fast Switching Synchronization in Time-Varying Network Topologies , 2006, SIAM J. Appl. Dyn. Syst..

[20]  X. Mao Stochastic Functional Differential Equations with Markovian Switching , 2004 .

[21]  C. Wu Perturbation of coupling matrices and its effect on the synchronizability in arrays of coupled chaotic systems , 2003, nlin/0307052.

[22]  Xiao Fan Wang,et al.  Synchronization in Small-World Dynamical Networks , 2002, Int. J. Bifurc. Chaos.

[23]  Tao Yang,et al.  In: Impulsive control theory , 2001 .

[24]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[25]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[26]  Kazuo Tanaka,et al.  Fuzzy control of chaotic systems using LMIs: regulation, synchronization and chaos model following , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[27]  T. Carroll,et al.  Master Stability Functions for Synchronized Coupled Systems , 1998 .

[28]  X. Mao,et al.  Stochastic Differential Equations and Applications , 1998 .

[29]  L. Chua,et al.  Synchronization in an array of linearly coupled dynamical systems , 1995 .

[30]  X. Mao,et al.  Exponential Stability of Stochastic Di erential Equations , 1994 .

[31]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[32]  W. J. Anderson Continuous-Time Markov Chains , 1991 .

[33]  H. Chizeck,et al.  Controllability, stabilizability, and continuous-time Markovian jump linear quadratic control , 1990 .

[34]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[35]  M. Mariton,et al.  Jump Linear Systems in Automatic Control , 1992 .

[36]  P. Falb,et al.  Stability Conditions for Systems with Monotone and Slope-Restricted Nonlinearities , 1968 .

[37]  A. Winfree Biological rhythms and the behavior of populations of coupled oscillators. , 1967, Journal of theoretical biology.

[38]  M. Bartlett,et al.  Weak ergodicity in non-homogeneous Markov chains , 1958, Mathematical Proceedings of the Cambridge Philosophical Society.