Workforce-constrained Preventive Maintenance Scheduling Using Evolution Strategies

Heavy equipment overhaul facilities such as aircraft service centers and railroad yards face the challenge of minimizing the makespan for a set of preventive maintenance (PM) tasks, requiring single or multiple skills, within workforce availability constraints. In this paper, we examine the utility of evolution strategies to this problem. Comparison of the computational efforts of evolution strategies with exhaustive enumeration to reach optimal solutions for 60 small problems illustrates the ability of evolution strategies to yield optimal solutions increasingly efficiently with increasing problem size. A set of 852 large-scale problems was solved using evolution strategies to examine the effects of task-related problem characteristics, workforce-related variables, and evolution strategies population size (μ) on CPU time. The results empirically supported practical utility of evolution strategies to solve large-scale, complex preventive maintenance problems involving single- and multiple-skilled workforce. Finally, comparison of evolution strategies and simulated annealing for the 852 experiments indicated much faster convergence to optimality with evolution strategies.

[1]  Garrison W. Greenwood So many algorithms. So little time , 1997, SOEN.

[2]  Zbigniew Michalewicz,et al.  Genetic Algorithms Plus Data Structures Equals Evolution Programs , 1994 .

[3]  M. J. Norušis,et al.  SPSS Advanced Statistics 6.1 , 1995 .

[4]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[5]  Rommert Dekker,et al.  Preventive maintenance at opportunities of restricted duration , 1991 .

[6]  Y. S. Sherif,et al.  Optimal maintenance models for systems subject to failure–A Review , 1981 .

[7]  D. Fogel Phenotypes, genotypes, and operators in evolutionary computation , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[8]  Ram Rachamadugu,et al.  Scheduling with Sequencing Flexibility , 1993 .

[9]  J. Lenstra,et al.  Job-Shop Scheduling by Implicit Enumeration , 1977 .

[10]  Edward R. Clayton,et al.  An Evolutionary Algorithm for Sequencing Production on a Paced Assembly Line , 2000, Decis. Sci..

[11]  Richard M. Feldman,et al.  A survey of preventive maintenance models for stochastically deteriorating single-unit systems , 1989 .

[12]  Roger G. Schroeder,et al.  A FRAMEWORK FOR QUALITY MANAGEMENT RESEARCH AND AN ASSOCIATED MEASUREMENT INSTRUMENT , 1994 .

[13]  D. Fogel Evolutionary algorithms in theory and practice , 1997, Complex..

[14]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[15]  Loren Paul Rees,et al.  Assembly Line Balancing Using Genetic Algorithms with Heuristic‐Generated Initial Populations and Multiple Evaluation Criteria* , 1994 .

[16]  Marc Salomon,et al.  Planning the Size and Organization of KLM's Aircraft Maintenance Personnel , 1994 .

[17]  R. Barlow,et al.  Optimum Preventive Maintenance Policies , 1960 .

[18]  Kamal Golabi,et al.  A Statewide Pavement Management System , 1982 .

[19]  Michael Lam,et al.  AN INTRODUCTION TO AIRLINE MAINTENANCE , 1995 .

[20]  Zbigniew Michalewicz,et al.  Evolutionary Computation 1 , 2018 .

[21]  Nirwan Ansari,et al.  A Genetic Algorithm for Multiprocessor Scheduling , 1994, IEEE Trans. Parallel Distributed Syst..

[22]  John E. Biegel,et al.  Genetic algorithms and job shop scheduling , 1990 .

[23]  Harvey J. Greenberg,et al.  New approaches for heuristic search: A bilateral linkage with artificial intelligence , 1989 .

[24]  Garrison W. Greenwood,et al.  Scheduling tasks in multiprocessor systems using evolutionary strategies , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[25]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning , 1991, Oper. Res..

[26]  J. McCall Maintenance Policies for Stochastically Failing Equipment: A Survey , 1965 .

[27]  Gündüz Ulusoy,et al.  Design and implementation of a maintenance planning and control system , 1992 .

[28]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[29]  Jayant V. Saraph,et al.  An Instrument for Measuring the Critical Factors of Quality Management , 1989 .

[30]  V. Daniel R. Guide,et al.  An exploration of the components of JIT: Case study and survey results , 1995 .

[31]  Hau L. Lee,et al.  Warnings of Malfunction: The Decision to Inspect and Maintain Production Processes on Schedule or on Demand , 1987 .

[32]  J. Carlier,et al.  An algorithm for solving the job-shop problem , 1989 .

[33]  Chee-Kit Looi,et al.  Neural network methods in combinatorial optimization , 1992, Comput. Oper. Res..

[34]  Kamal Golabi,et al.  Pontis: A System for Maintenance Optimization and Improvement of US Bridge Networks , 1997 .

[35]  William P. Pierskalla,et al.  A survey of maintenance models: The control and surveillance of deteriorating systems , 1976 .

[36]  Scott F. Midkiff,et al.  Heuristic Technique for Processor and Link Assignment in Multicomputers , 1991, IEEE Trans. Computers.

[37]  David M. Miller,et al.  Maximizing the Effectiveness of a Preventive Maintenance System: An Adaptive Modeling Approach , 1997 .

[38]  Egon Balas,et al.  The Shifting Bottleneck Procedure for Job Shop Scheduling , 1988 .

[39]  Jan Karel Lenstra,et al.  Job Shop Scheduling by Simulated Annealing , 1992, Oper. Res..

[40]  Tarun Gupta,et al.  JIT and TQM: a case for joint implementation , 1995 .

[41]  Richard W. Eglese,et al.  Simulated annealing: A tool for operational research , 1990 .