On the eigenvalues of random matrices

Let M be a random matrix chosen from Haar measure on the unitary group U,,. Let Z = X + iY be a standard complex normal random variable with X and Y independent, mean 0 and variance 4normal variables. We show that for j = 1, 2 , . . . . Tr(MJ) are independent and distributed as d Z asymptotically as n + m. This result is used to study the set of eigenvalues of M. Similar results are given for the orthogonal and symplectic and symmetric groups. HAAR MEASURE, ORTHOGONAL GROUPS; SYMPLECTIC GROUPS, SYMMETRIC GROUPS AMS 1991 SUBJECT CLASSIFICATION 15A52

[1]  Richard Brauer,et al.  On Algebras Which are Connected with the Semisimple Continuous Groups , 1937 .

[2]  H. Weyl The Classical Groups , 1939 .

[3]  J. O. Irwin A Unified Derivation of Some Well‐Known Frequency Distributions of Interest in Biometry and Statistics , 1955 .

[4]  L. A. Shepp,et al.  Ordered cycle lengths in a random permutation , 1966 .

[5]  P. Erdos,et al.  On some problems of a statistical group-theory. II , 1967 .

[6]  G. Sankaranarayanan,et al.  Ordered cycle lengths in a random permutation. , 1971 .

[7]  G. A. Watterson,et al.  Models for the logarithmic species abundance distributions. , 1974, Theoretical population biology.

[8]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[9]  Lajos Takács,et al.  The problem of coincidences , 1980 .

[10]  Anatoly M. Vershik,et al.  Asymptotic theory of characters of the symmetric group , 1981 .

[11]  G. Pólya,et al.  Combinatorial Enumeration Of Groups, Graphs, And Chemical Compounds , 1988 .

[12]  P. Diaconis,et al.  The Subgroup Algorithm for Generating Uniform Random Variables , 1987, Probability in the Engineering and Informational Sciences.

[13]  Richard Stong,et al.  Some asymptotic results on finite vector spaces , 1988 .

[14]  Hans Wenzl,et al.  On the structure of Brauer’s centralizer algebras , 1988 .

[15]  Eigenvalues connected with Brauer's centralizer algebras , 1989 .

[16]  Phil Hanlon,et al.  On the decomposition of Brauer's centralizer algebras , 1989 .

[17]  Chapter 9: Finite de Finetti style theorems for linear models , 1989 .

[18]  William M. Y. Goh,et al.  A Central Limit Theorem on GLn /Fq) , 1991, Random Struct. Algorithms.

[19]  R. Arratia,et al.  The Cycle Structure of Random Permutations , 1992 .

[20]  Richard P. Stanley,et al.  Some combinatorial aspects of the spectra of normally distributed random matrices , 1992 .

[21]  Steffen L. Lauritzen,et al.  Finite de Finetti theorems in linear models and multivariate analysis , 1992 .

[22]  C. Tracy,et al.  Introduction to Random Matrices , 1992, hep-th/9210073.

[23]  Jennie C. Hansen,et al.  How random is the characteristic polynomial of a random matrix , 1993 .

[24]  Richard Stong The Average Order of a Matrix , 1993, J. Comb. Theory, Ser. A.

[25]  Arun Ram,et al.  Characters of Brauer's centralizer algebras. , 1995 .