Formal Power Series and Loose Entry Formulas for the Dixon Matrix

Formal power series are used to derive four entry formulas for the Dixon matrix. These entry formulas have uniform and simple summation bounds for the entire Dixon matrix. When corner cutting is applied to the monomial support, each of the four loose entry formulas simplifies greatly for some rows and columns associated with a particular corner, but still maintains the uniform and simple summation bounds. Uniform summation bounds make the entry formulas loose because redundant brackets that eventually vanish are produced. On the other hand, uniform summation bounds reveal valuable information about the properties of the Dixon matrix for a corner-cut monomial support.

[1]  Cheri Shakiban,et al.  Classification of Signature Curves Using Latent Semantic Analysis , 2004, IWMM/GIAE.

[2]  Bernard Mourrain,et al.  Matrices in Elimination Theory , 1999, J. Symb. Comput..

[3]  Eng-Wee Chionh,et al.  Corner edge cutting and Dixon A-resultant quotients , 2004, J. Symb. Comput..

[4]  Deepak Kapur,et al.  Comparison of various multivariate resultants , 1995, ISSAC 1995.

[5]  Eng-Wee Chionh Rectangular Corner Cutting and Dixon A-resultants , 2001, J. Symb. Comput..

[6]  Ron Goldman,et al.  Fast Computation of the Bezout and Dixon Resultant Matrices , 2002, J. Symb. Comput..

[7]  Eng-Wee Chionh Parallel Dixon Matrices by Bracket , 2003, Adv. Comput. Math..

[8]  Ron Goldman,et al.  Implicitization by Dixon A-resultants , 2000, Proceedings Geometric Modeling and Processing 2000. Theory and Applications.

[9]  Deepak Kapur,et al.  Sparsity considerations in Dixon resultants , 1996, STOC '96.

[10]  Deepak Kapur,et al.  Exact resultants for corner-cut unmixed multivariate polynomial systems using the Dixon formulation , 2003, J. Symb. Comput..

[11]  Deepak Kapur,et al.  A new sylvester-type resultant method based on the dixon-bezout formulation , 2003 .

[12]  A. L. Dixon The Eliminant of Three Quantics in two Independent Variables , 1909 .

[13]  Eng-Wee Chionh Concise parallel Dixon determinant , 1997, Comput. Aided Geom. Des..

[14]  Deepak Kapur,et al.  Resultants for unmixed bivariate polynomial systems produced using the Dixon formulation , 2004, J. Symb. Comput..

[15]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[16]  Deepak Kapur,et al.  Comparison of various multivariate resultant formulations , 1995, ISSAC '95.

[17]  Deepak Kapur,et al.  Sparsity considerations in the dixon resultant formulation , 1996, STOC 1996.

[18]  Deepak Kapur,et al.  On the efficiency and optimality of Dixon-based resultant methods , 2002, ISSAC '02.