The PROSPER Toolkit

The PROSPER (Proof andS pecification Assisted Design Environments) project advocates the use of toolkits which allow existing verification tools to be adapted to a more flexible format so that they may be treated as components. A system incorporating such tools becomes another component that can be embedded in an application. This paper describes the PROSPER Toolkit which enables this. The nature of communication between components is specifiedin a language-independent way. It is implemented in several common programming languages to allow a wide variety of tools to have access to the toolkit.

[1]  Richard J. Boulton,et al.  Generating Embeddings from Denotational Descriptions , 1998, TPHOLs.

[2]  Ken Friis Larsen,et al.  Combining the Hol98 proof assistant with the BuDDy BDD package , 1999 .

[3]  Frank van Harmelen,et al.  Extensions to the Rippling-Out Tactic for Guiding Inductive Proofs , 1990, CADE.

[4]  Ingo Dahn,et al.  Integration of Automated and Interactive Theorem Proving in ILP , 1997, CADE.

[5]  Fausto Giunchiglia,et al.  NUSMV: A New Symbolic Model Verifier , 1999, CAV.

[6]  Natarajan Shankar,et al.  PVS: Combining Specification, Proof Checking, and Model Checking , 1996, FMCAD.

[7]  A. Armando,et al.  Interfacing Computer Algebra and Deduction Systems via the Logic Broker Architecture , 2001 .

[8]  Robin Milner,et al.  Definition of standard ML , 1990 .

[9]  Thomas Kropf,et al.  Automatic Error Correction of Large Circuits Using Boolean Decomposition and Abstraction , 1999, CHARME.

[10]  Volker Sorge,et al.  Agent-Oriented Integration of Distributed Mathematical Services , 1999, J. Univers. Comput. Sci..

[11]  Jörg Denzinger,et al.  Knowledge-based Cooperation between Theorem Provers by Techs , 1999 .

[12]  Thomas F. Melham A Mechanized Theory of the Pi-Calculus in HOL , 1994, Nord. J. Comput..

[13]  Yves Bertot,et al.  The CtCoq System: Design and Architecture , 1999, Formal Aspects of Computing.

[14]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[15]  Kenneth L. McMillan,et al.  Symbolic model checking , 1992 .

[16]  Mary Sheeran,et al.  A Tutorial on Stålmarcks's Proof Procedure for Propositional Logic , 1998, FMCAD.

[17]  Natarajan Shankar,et al.  An Integration of Model Checking with Automated Proof Checking , 1995, CAV.

[18]  Jim Grundy,et al.  Proceedings of the 9th International Conference on Theorem Proving in Higher Order Logics , 1996 .

[19]  Richard J. Boulton,et al.  A Tool to Support Formal Reasoning about Computer Languages , 1997, TACAS.

[20]  David L. Dill,et al.  Validity Checking for Combinations of Theories with Equality , 1996, FMCAD.

[21]  Louise A. Dennis,et al.  System Description: Embedding Verification into Microsoft Excel , 2000, CADE.

[22]  S. Anderson,et al.  Secure Synthesis of Code: A Process Improvement Experiment , 1999, World Congress on Formal Methods.

[23]  K. Rustan M. Leino,et al.  Extended static checking , 1998, PROCOMET.

[24]  Parasuram Anantharam Modelling systems , 2000, SOEN.

[25]  Randal E. Bryant,et al.  Formal verification by symbolic evaluation of partially-ordered trajectories , 1995, Formal Methods Syst. Des..

[26]  Luqi,et al.  Formal Methods and Social Context in Software Development , 1995, TAPSOFT.

[27]  Carl-Johan H. Seger,et al.  Lifted-FL: A Pragmatic Implementation of Combined Model Checking and Theorem Proving , 1999, TPHOLs.

[28]  Richard J. Boulton,et al.  An Interface between Clam and HOL , 1998, TPHOLs.

[29]  Ewan Klein,et al.  A semantically-derived subset of English for hardware verification , 1999, ACL.

[30]  Joe Hurd Integrating Gandalf and HOL , 1999, TPHOLs.

[31]  Yassine Lakhnech,et al.  InVeST: A Tool for the Verification of Invariants , 1998, CAV.

[32]  Patrick Suppes,et al.  Axiomatic set theory , 1969 .

[33]  Dale Miller,et al.  A Logic Programming Language with Lambda-Abstraction, Function Variables, and Simple Unification , 1991, J. Log. Comput..

[34]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[35]  Jeffrey J. Joyce,et al.  Linking BDD-Based Symbolic Evaluation to Interactive Theorem-Proving , 1993, 30th ACM/IEEE Design Automation Conference.

[36]  Ernst-Rüdiger Olderog,et al.  The UniForM Workbench, a Universal Development Environment for Formal Methods , 1999, World Congress on Formal Methods.

[37]  Ralf Reetz Deep Embedding VHDL , 1995, TPHOLs.

[38]  Thomas Kropf,et al.  Simplifying Deep Embedding: A Formalised Code Generator , 1994, TPHOLs.

[39]  Natarajan Shankar,et al.  Using Decision Procedures with a Higher-Order Logic , 2001, TPHOLs.

[40]  M. Gordon,et al.  Introduction to HOL: a theorem proving environment for higher order logic , 1993 .

[41]  Jeremy R. Levitt,et al.  Formal verification techniques for digital systems , 1998 .

[42]  Bernhard Beckert,et al.  Integrating Automated and Interactive Theorem Proving , 1998 .

[43]  Tiziana Margaria,et al.  The Electronic Tool Integration platform: concepts and design , 1997, International Journal on Software Tools for Technology Transfer.

[44]  Michael Kohlhase,et al.  System Description: MBASE, an Open Mathematical Knowledge Base , 2000, CADE.

[45]  Jonathan P. Bowen,et al.  A shallow embedding of Z in HOL , 1995, Inf. Softw. Technol..

[46]  Frank van Harmelen,et al.  The Oyster-Clam System , 1990, CADE.

[47]  César Muñoz,et al.  An Overview of SAL , 2000 .

[48]  Bernhard Schätz,et al.  Consistent Integration of Formal Methods , 2000, TACAS.

[49]  Mary Sheeran,et al.  A Tutorial on Stålmarck's Proof Procedure for Propositional Logic , 2000, Formal Methods Syst. Des..

[50]  Fausto Giunchiglia,et al.  Reasoning Theories: Towards an Architecture for Open Mechanized Reasoning Systems , 1994, FroCoS.

[51]  John Robert Harrison,et al.  Theorem proving with the real numbers , 1998, CPHC/BCS distinguished dissertations.

[52]  G. Stålmarck,et al.  Modeling and Verifying Systems and Software in Propositional Logic , 1990 .

[53]  Bernhard Beckert,et al.  The Approach: Integrating Object-oriented Design and Formal Verification (cid:3) , 2007 .

[54]  Bishop Brock,et al.  ACL2 Theorems About Commercial Microprocessors , 1996, FMCAD.

[55]  Richard J. Boulton,et al.  Experience with Embedding Hardware Description Languages in HOL , 1992, TPCD.

[56]  Michael J. C. Gordon,et al.  Edinburgh LCF: A mechanised logic of computation , 1979 .

[57]  Michael Kohlhase,et al.  Symbolic computation and automated reasoning : the CALCULEMUS-2000 Symposium , 2001 .

[58]  Louise A. Dennis,et al.  Integrating SVC and HOL with the PROSPER Toolkit , 2000 .

[59]  Tanel Tammet,et al.  A Resolution Theorem Prover for Intuitonistic Logic , 1996, CADE.

[60]  Michael J. C. Gordon,et al.  Mechanizing programming logics in higher order logic , 1989 .

[61]  Lawrence Charles Paulson,et al.  Isabelle: A Generic Theorem Prover , 1994 .

[62]  Volker Sorge,et al.  Omega: Towards a Mathematical Assistant , 1997, CADE.