Nonlinear Model Predictive Control of Reentry Vehicles Based on Takagi-Sugeno Fuzzy Models

In this paper, we apply a discrete-time Takagi-Sugeno Fuzzy Model (TSFM) based model predictive controller (MPC) to a Martian aerocapture vehicle following an arbitrary trajectory. We compare two baseline controllers: a continuous-time TSFM based parallel distributed controller (PDC) and a finite-horizon linear quadratic regulator (LQR). We evaluate the change in velocity ( Δ V ) required to bring the orbit of the controlled exit conditions to the orbit of the reference trajectory exit conditions over a range of initial condition errors and perturbations to atmospheric density. The LQR controller was least robust but performed best in a smaller range of perturbations. The PDC controller was most robust but performed the worst. The MPC based controllers demonstrate a balance of robustness and performance.

[1]  Nesrin Sarigul-Klijn,et al.  Survey of planetary entry guidance algorithms , 2014 .

[2]  Ping Lu,et al.  Entry Guidance by Onboard Trajectory Planning and Tracking , 2016 .

[3]  Donald E. Kirk,et al.  Optimal control theory : an introduction , 1970 .

[4]  Richard W. Powell,et al.  Six-degree-of-freedom guidance and control analysis of Mars aerocapture , 1993 .

[5]  N. Vinh,et al.  Hypersonic and Planetary Entry Flight Mechanics , 1980 .

[6]  János Abonyi,et al.  Effective optimization for fuzzy model predictive control , 2004, IEEE Transactions on Fuzzy Systems.

[7]  Erdal Kayacan,et al.  Model Predictive Control in Aerospace Systems: Current State and Opportunities , 2017 .

[8]  Y. Yam,et al.  Tensor Product Model Transformation in Polytopic Model-Based Control , 2013 .

[9]  Yuanqing Xia,et al.  Mars atmospheric entry guidance for reference trajectory tracking based on robust nonlinear compound controller , 2017 .

[10]  Angelo Miele,et al.  The 1st John V. Breakwell Memorial Lecture: Recent advances in the optimization and guidance of aeroassisted orbital transfers☆☆☆ , 1996 .

[11]  James P. Masciarelli,et al.  Guidance Algorithms for Aerocapture at Titan , 2003 .

[12]  P. Lu,et al.  Optimal Aerocapture Guidance , 2015 .

[13]  M. I. Cruz,et al.  The aerocapture vehicle mission design concept. [aerodynamically controlled capture of payload into Mars orbit] , 1979 .

[14]  Ping Lu,et al.  Verification of a Fully Numerical Entry Guidance Algorithm , 2017 .

[15]  S. Bharadwaj,et al.  ENTRY TRAJECTORY TRACKING LAW VIA FEEDBACK LINEARIZATION , 1998 .

[16]  George M. Siouris,et al.  Applied Optimal Control: Optimization, Estimation, and Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[17]  Benjamin W. L. Margolis,et al.  SimuPy: A Python framework for modeling and simulating dynamical systems , 2017, J. Open Source Softw..

[18]  Etienne Perot,et al.  An analytic aerocapture guidance algorithm for the Mars Sample Return Orbiter , 2000 .

[19]  A. Cavallo,et al.  Atmospheric re-entry control for low lift/drag vehicles , 1996 .

[20]  Yuanqing Xia,et al.  Active disturbance rejection control for drag tracking in mars entry guidance , 2014 .

[21]  Kazuo Tanaka,et al.  Fuzzy control systems design and analysis , 2001 .

[22]  Greg A. Dukeman,et al.  Profile-Following Entry Guidance Using Linear Quadratic Regulator Theory , 2002 .

[23]  G. Walberg A Survey of Aeroassisted Orbit Transfer , 1985 .

[24]  Cheatwood F. McNeil,et al.  An Atmospheric Guidance Algorithm Testbed for the Mars Surveyor Program 2001 Orbiter and Lander , 1998 .

[25]  Steve Ulrich,et al.  Autonomous atmospheric entry on mars: Performance improvement using a novel adaptive control algorithm , 2007 .

[26]  Vincent Wertz,et al.  Fuzzy Logic, Identification and Predictive Control , 2004 .

[27]  Ping Lu,et al.  Entry Guidance: A Unified Method , 2014 .

[28]  T. Taniguchi,et al.  A new PDC for fuzzy reference models , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).