Nonlinear control of a bioreactor model using exact and I/O linearization

A nonlinear multivariable bioreactor system has been the subject of two differential geometry feedback control design approaches. Exact linearization and input/output linearization are applied to the bioreactor model and verified by simulation experiments. Exact linearization via state feedback shows a high degree of coupling on the controlled variables and large changes on the manipulated variables. Input/output linearization, with the ability of implementing independent, decoupled control loops, gives more satisfactory results. The issues of invertabiity and parameter uncertainties are also discussed in this paper.

[1]  Chi-Tsong Chen,et al.  Introduction to linear system theory , 1970 .

[2]  Louis R. Hunt,et al.  Design for Multi-Input Nonlinear Systems , 1982 .

[3]  G Stephanopoulos,et al.  Studies on on‐line bioreactor identification. I. Theory , 1984, Biotechnology and bioengineering.

[4]  J. Kantor,et al.  Global linearization and control of a mixed-culture bioreactor with competition and external inhibition , 1986 .

[5]  I. Ha,et al.  A complete characterization of decoupling control laws for a general class of nonlinear systems , 1986 .

[6]  C. Kravaris,et al.  Nonlinear State Feedback Synthesis by Global Input/Output Linearization , 1986, 1986 American Control Conference.

[7]  David G. Taylor,et al.  Adaptive Regulation of Nonlinear Systems with Unmodeled Dynamics , 1988, 1988 American Control Conference.

[8]  K. Nam,et al.  A model reference adaptive control scheme for pure-feedback nonlinear systems , 1988 .

[9]  Riccardo Marino,et al.  A geometric approach to nonlinear singularly perturbed control systems, , 1988, Autom..

[10]  A. Isidori,et al.  Adaptive control of linearizable systems , 1989 .

[11]  Maciejowsk Multivariable Feedback Design , 1989 .

[12]  C. Kravaris,et al.  Synthesis of multivariable nonlinear controllers by input/output linearization , 1990 .

[13]  C. Kravaris,et al.  Feedforward/feedback control of multivariable nonlinear processes , 1990 .

[14]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[15]  Hong-Te Su,et al.  Identification of Chemical Processes using Recurrent Networks , 1991, 1991 American Control Conference.

[16]  P. Kokotovic,et al.  The peaking phenomenon and the global stabilization of nonlinear systems , 1991 .

[17]  M. N. Karim,et al.  Comparison of feed-forward and recurrent neural networks for bioprocess state estimation , 1992 .

[18]  Prodromos Daoutidis,et al.  Feedforward/Output Feedback Control of Nonlinear Processes , 1993, 1993 American Control Conference.