Role of hormone-sensitive GTPases in adenylate cylase regulation.

[1]  G. Schultz,et al.  Mechanism of pertussis toxin action on the adenylate cyclase system. Inhibition of the turn-on reaction of the inhibitory regulatory site. , 1984, European journal of biochemistry.

[2]  G. Schultz,et al.  Somatostatin-induced stimulation of a high-affinity GTPase in membranes of S49 lymphoma cyc- and H21a variants. , 1983, Molecular pharmacology.

[3]  K. Jakobs,et al.  Synergistic inhibition of human platelet adenylate cyclase by stable GTP analogs and epinephrine. , 1983, Biochimica et biophysica acta.

[4]  G. Schultz,et al.  Adenylate cyclase inhibition and GTPase stimulation by somatostatin in S49 lymphoma cyc− variants are prevented by islet‐activating protein , 1983, FEBS letters.

[5]  G. Schultz,et al.  Occurrence of a hormone-sensitive inhibitory coupling component of the adenylate cyclase in S49 lymphoma cyc- variants. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[6]  G. Schultz,et al.  Islet‐activating protein prevents nicotinic acid‐induced GTPase stimulation and GTP but not GTPγS‐induced adenylate cyclase inhibition in rat adipocytes , 1983, FEBS letters.

[7]  T. Katada,et al.  Specific uncoupling by islet-activating protein, pertussis toxin, of negative signal transduction via alpha-adrenergic, cholinergic, and opiate receptors in neuroblastoma x glioma hybrid cells. , 1983, The Journal of biological chemistry.

[8]  R. Iyengar,et al.  Stimulation and inhibition of adenylyl cyclases mediated by distinct regulatory proteins , 1983, Nature.

[9]  G. Schultz,et al.  Activation of human platelet adenylate cyclase by a bovine sperm component. , 1983, Biochimica et biophysica acta.

[10]  K. Jakobs Determination of the turn-off reaction for the epinephrine-inhibited human platelet adenylate cyclase. , 1983, European journal of biochemistry.

[11]  E. Hewlett,et al.  Identification of the predominant substrate for ADP-ribosylation by islet activating protein. , 1983, The Journal of biological chemistry.

[12]  E. Hewlett,et al.  Pertussis toxin inhibits enkephalin stimulation of GTPase of NG108-15 cells. , 1983, The Journal of biological chemistry.

[13]  G. Schultz,et al.  Occurrence of an inhibitory guanine nucleotide-binding regulatory component of the adenylate cyclase system in cyc- variants of S49 lymphoma cells. , 1983, European journal of biochemistry.

[14]  J. Hanoune,et al.  Guanine nucleotide inhibition of cyc- S49 mouse lymphoma cell membrane adenylyl cyclase. , 1982, The Journal of biological chemistry.

[15]  G. Koski,et al.  Modulation of sodium-sensitive GTPase by partial opiate agonists. An explanation for the dual requirement for Na+ and GTP in inhibitory regulation of adenylate cyclase. , 1982, The Journal of biological chemistry.

[16]  G. Schultz,et al.  Cholera toxin does not impair hormonal inhibition of adenylate cyclase and concomitant stimulation of a GTPase in adipocyte membranes. , 1982, Biochimica et biophysica acta.

[17]  G. Schultz,et al.  Cholera toxin inhibits prostaglandin E1 but not adrenaline‐induced stimulation of GTP hydrolysis in human platelet membranes , 1982, FEBS letters.

[18]  K. Jakobs,et al.  Guanine nucleotides and monovalent cations increase agonist affinity of prostaglandin E2 receptors in hamster adipocytes. , 1982, Molecular pharmacology.

[19]  T. Katada,et al.  ADP ribosylation of the specific membrane protein of C6 cells by islet-activating protein associated with modification of adenylate cyclase activity. , 1982, The Journal of biological chemistry.

[20]  R. Lefkowitz,et al.  Hormone-sensitive adenylate cyclase. Delineation of a trypsin-sensitive site in the pathway of receptor-mediated inhibition. , 1982, The Journal of biological chemistry.

[21]  G. Schultz,et al.  Uncoupling of alpha-adrenoceptor-mediated inhibition of human platelet adenylate cyclase by N-ethylmaleimide. , 1982, The Journal of biological chemistry.

[22]  J. C. Stoof,et al.  D-2 dopamine receptor-mediated inhibition of adenylate cyclase activity in the intermediate lobe of the rat pituitary gland requires guanosine 5'-triphosphate. , 1982, Endocrinology.

[23]  G. Schultz,et al.  Stimulation of a low Km GTPase by inhibitors of adipocyte adenylate cyclase. , 1982, Molecular pharmacology.

[24]  A. Levitzki,et al.  Prostaglandin-stimulated GTP hydrolysis associated with activation of adenylate cyclase in human platelet membranes. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[25]  G. Schultz,et al.  Adenosine receptor-mediated stimulation of GTP hydrolysis in adipocyte membranes. , 1982, Life sciences.

[26]  T. Katada,et al.  Islet-activating protein. A modifier of receptor-mediated regulation of rat islet adenylate cyclase. , 1981, The Journal of biological chemistry.

[27]  K. Jakobs,et al.  Epinephrine inhibits adenylate cyclase and stimulates a GTPase in human platelet membranes vis α‐adrenoceptors , 1981 .

[28]  G. Koski,et al.  Opiates inhibit adenylate cyclase by stimulating GTP hydrolysis. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J. Christophe,et al.  Distinct effects of the C-terminal octapeptide of cholecystokinin and of a cholera toxin pretreatment of the kinetics of rat pancreatic adenylate cyclase activity. , 1981, Biochimica et biophysica acta.

[30]  B. Hamprecht,et al.  Opioids, Noradrenaline and GTP Analogs Inhibit Cholera Toxin Activated Adenylate Cyclase in Neuroblastoma × Glioma Hybrid Cells , 1981, Journal of neurochemistry.

[31]  N. Shimada,et al.  Glucagon‐stimulated GTP hydrolysis in rat liver plasma membranes , 1980, FEBS letters.

[32]  R. Lefkowitz,et al.  Activation and desensitization of beta-adrenergic receptor-coupled GTPase and adenylate cyclase of frog and turkey erythrocyte membranes. , 1980, The Journal of biological chemistry.

[33]  G. Schultz,et al.  Inhibition of hamster fat cell adenylate cyclase by prostaglandin E1 and epinephrine: Requirement for GTP and sodium ions , 1979, FEBS letters.

[34]  A. Blume,et al.  Coupling of opiate receptors to adenylate cyclase: requirement for Na+ and GTP. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[35]  T. Pfeuffer Guanine nucleotide‐controlled interactions between components of adenylate cyclase , 1979, FEBS letters.

[36]  J. Christophe,et al.  Hormone‐stimulated GTPase activity in rat pancreatic plasma membranes , 1979, FEBS letters.

[37]  D. Cassel,et al.  Mechanism of adenylate cyclase activation through the beta-adrenergic receptor: catecholamine-induced displacement of bound GDP by GTP. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[38]  D. Cassel,et al.  Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[39]  D. Cassel,et al.  The regulatory GTPase cycle of turkey erythrocyte adenylate cyclase. , 1977, Journal of cyclic nucleotide research.

[40]  D. Cassel,et al.  Activation of turkey erythrocyte adenylate cyclase and blocking of the catecholamine-stimulated GTPase by guanosine 5'-(gamma-thio) triphosphate. , 1977, Biochemical and biophysical research communications.

[41]  D. Cassel,et al.  Mechanism of adenylate cyclase activation by cholera toxin: inhibition of GTP hydrolysis at the regulatory site. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[42]  D. Cassel,et al.  Catecholamine-stimulated GTPase activity in turkey erythrocyte membranes. , 1976, Biochimica et biophysica acta.

[43]  G. Schultz,et al.  Mechanisms and components involved in adenylate cyclase inhibition by hormones. , 1984, Advances in cyclic nucleotide and protein phosphorylation research.

[44]  A. Gilman,et al.  Biochemical properties of hormone-sensitive adenylate cyclase. , 1980, Annual review of biochemistry.

[45]  H. Bourne,et al.  Genetic analysis of hormone-sensitive adenylate cyclase. , 1980, Advances in cyclic nucleotide research.