A theoretical result of a support vector machine formulation to LDA

In this paper, we first propose a method to transform from LDA to PCA with the discriminative information embedded in a whitening transformation, and then we propose a simple support vector machine formulation to LDA. The results of experiments of face recognition conducted on ORL database show the effectiveness of the proposed method.

[1]  Konstantinos N. Plataniotis,et al.  Face recognition using kernel direct discriminant analysis algorithms , 2003, IEEE Trans. Neural Networks.

[2]  Josef Kittler,et al.  Pattern recognition : a statistical approach , 1982 .

[3]  Johan A. K. Suykens,et al.  Kernel Component Analysis Using an Epsilon-Insensitive Robust Loss Function , 2008, IEEE Transactions on Neural Networks.

[4]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[5]  Thomas G. Dietterich,et al.  Solving Multiclass Learning Problems via Error-Correcting Output Codes , 1994, J. Artif. Intell. Res..

[6]  B. Scholkopf,et al.  Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[7]  Shigeo Abe,et al.  Fuzzy least squares support vector machines for multiclass problems , 2003, Neural Networks.

[8]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[9]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[10]  Hua Yu,et al.  A direct LDA algorithm for high-dimensional data - with application to face recognition , 2001, Pattern Recognit..

[11]  Vladimir Vapnik,et al.  An overview of statistical learning theory , 1999, IEEE Trans. Neural Networks.

[12]  G. Baudat,et al.  Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.

[13]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[14]  Shigeo Abe,et al.  Fuzzy least squares support vector machines , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..

[15]  Johan A. K. Suykens,et al.  A support vector machine formulation to PCA analysis and its kernel version , 2003, IEEE Trans. Neural Networks.

[16]  Johan A. K. Suykens,et al.  Bayesian Framework for Least-Squares Support Vector Machine Classifiers, Gaussian Processes, and Kernel Fisher Discriminant Analysis , 2002, Neural Computation.

[17]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.