Study of contrail microphysics in the vortex phase with a Lagrangian particle tracking model

Abstract. Crystal sublimation/loss is a dominant feature of the contrail evolution during the vortex phase and has a substantial impact on the later contrail-to-cirrus transition. Previous studies showed that the fraction of crystals surviving the vortex phase depends primarily on relative humidity, temperature and the aircraft type. An existing model for contrail vortex phase simulations (with a 2-moment bulk microphysics scheme) was upgraded with a newly developed state-of-the-art microphysics module (LCM) which uses Lagrangian particle tracking. This allows for explicit process-oriented modelling of the ice crystal size distribution in contrast to the bulk approach. We show that it is of great importance to employ an advanced microphysics scheme to determine the crystal loss during the vortex phase. The LCM-model shows even larger sensitivities to the above mentioned key parameters than previously estimated with the bulk model. The impact of the initial crystal number is studied and for the first time also the initial width of the crystal size distribution. Both are shown to be relevant. This corroborates the need for a realistic representation of microphysical processes and knowledge of the ice phase characteristics.

[1]  U. Schumann,et al.  Near‐field measurements on contrail properties from fuels with different sulfur content , 1997 .

[2]  U. Schumann On conditions for contrail formation from aircraft exhausts , 1996 .

[3]  W. S. Lewellen,et al.  The Effects of Aircraft Wake Dynamics on Contrail Development , 2001 .

[4]  P. Minnis,et al.  Factors controlling contrail cirrus optical depth , 2009 .

[5]  W. Huebsch,et al.  Sensitivity Study on Contrail Evolution , 2006 .

[6]  Bernd Kärcher,et al.  A large‐eddy model for cirrus clouds with explicit aerosol and ice microphysics and Lagrangian ice particle tracking , 2010 .

[7]  T. Elperin,et al.  Critical comments to results of investigations of drop collisions in turbulent clouds , 2007 .

[8]  A. Khain,et al.  Collisions of Cloud Droplets in a Turbulent Flow. Part V: Application of Detailed Tables of Turbulent Collision Rate Enhancement to Simulation of Droplet Spectra Evolution , 2008 .

[9]  K. Gierens,et al.  Analytical treatment of ice sublimation and test of sublimation parameterisations in two–moment ice microphysics models , 2009 .

[10]  H. Appleman The Formation of Exhaust Condensation Trails by Jet Aircraft , 1953 .

[11]  L. Margolin,et al.  MPDATA: A Finite-Difference Solver for Geophysical Flows , 1998 .

[12]  J. Iaquinta,et al.  Cirrus Crystal Terminal Velocities , 2000 .

[13]  K. Gierens,et al.  Modelling of cirrus clouds – Part 1a: Model description and validation , 2008 .

[14]  E. Schmidt Die Entstehung von Eisnebel aus den Auspuffgasen von Flugmotoren , 1941 .

[15]  K. Gierens The influence of radiation on the diffusional growth of ice crystals , 1994 .

[16]  Len G. Margolin,et al.  On Forward-in-Time Differencing for Fluids: an Eulerian/Semi-Lagrangian Non-Hydrostatic Model for Stratified Flows , 1997 .

[17]  Bernd Kärcher,et al.  Role of aircraft soot emissions in contrail formation , 2009 .

[18]  Influence of vortex dynamics and atmospheric turbulence on the early evolution of a contrail , 2010 .

[19]  S. Crow Stability theory for a pair of trailing vortices , 1970 .

[20]  R. Sussmann,et al.  Lidar and numerical studies on the different evolution of vortex pair and secondary wake in young contrails , 1999 .

[21]  Frank Holzäpfel,et al.  Probabilistic Two-Phase Aircraft Wake-Vortex Model: Further Development and Assessment , 2006 .

[22]  T. Poinsot,et al.  Contrail formation in aircraft wakes , 2004, Journal of Fluid Mechanics.

[23]  P. Spichtinger,et al.  Cirrus clouds triggered by radiation, a multiscale phenomenon , 2010 .

[24]  H. Auvermann,et al.  Response characteristics of knollenberg light-scattering aerosol counters , 1979 .

[25]  P. Hobbs The Aggregation of Ice Particles in Clouds and Fogs at Low Temperatures , 1965 .

[26]  U. Lohmann,et al.  Orographic cirrus in a future climate , 2009 .

[27]  K. Gierens,et al.  The evolution of contrail microphysics in the vortex phase , 2008 .

[28]  Simon Unterstraßer Numerische Simulationen von Kondensstreifen und deren Übergang in Zirren , 2008 .

[29]  W. Cotton,et al.  Parameterization of ice crystal conversion processes due to vapor deposition for mesoscale models using double-moment basis functions. Part I: basic formulation and parcel model results , 1995 .

[30]  Eter,et al.  The evolution of contrail microphysics in the vortex phase , 2008 .

[31]  K. Gierens,et al.  Numerical simulations of contrail-to-cirrus transition – Part 2: Impact of initial ice crystal number, radiation, stratification, secondary nucleation and layer depth , 2009 .

[32]  K. Gierens,et al.  Numerical simulations of contrail-to-cirrus transition – Part 1: An extensive parametric study , 2009 .