Study of contrail microphysics in the vortex phase with a Lagrangian particle tracking model
暂无分享,去创建一个
[1] U. Schumann,et al. Near‐field measurements on contrail properties from fuels with different sulfur content , 1997 .
[2] U. Schumann. On conditions for contrail formation from aircraft exhausts , 1996 .
[3] W. S. Lewellen,et al. The Effects of Aircraft Wake Dynamics on Contrail Development , 2001 .
[4] P. Minnis,et al. Factors controlling contrail cirrus optical depth , 2009 .
[5] W. Huebsch,et al. Sensitivity Study on Contrail Evolution , 2006 .
[6] Bernd Kärcher,et al. A large‐eddy model for cirrus clouds with explicit aerosol and ice microphysics and Lagrangian ice particle tracking , 2010 .
[7] T. Elperin,et al. Critical comments to results of investigations of drop collisions in turbulent clouds , 2007 .
[8] A. Khain,et al. Collisions of Cloud Droplets in a Turbulent Flow. Part V: Application of Detailed Tables of Turbulent Collision Rate Enhancement to Simulation of Droplet Spectra Evolution , 2008 .
[9] K. Gierens,et al. Analytical treatment of ice sublimation and test of sublimation parameterisations in two–moment ice microphysics models , 2009 .
[10] H. Appleman. The Formation of Exhaust Condensation Trails by Jet Aircraft , 1953 .
[11] L. Margolin,et al. MPDATA: A Finite-Difference Solver for Geophysical Flows , 1998 .
[12] J. Iaquinta,et al. Cirrus Crystal Terminal Velocities , 2000 .
[13] K. Gierens,et al. Modelling of cirrus clouds – Part 1a: Model description and validation , 2008 .
[14] E. Schmidt. Die Entstehung von Eisnebel aus den Auspuffgasen von Flugmotoren , 1941 .
[15] K. Gierens. The influence of radiation on the diffusional growth of ice crystals , 1994 .
[16] Len G. Margolin,et al. On Forward-in-Time Differencing for Fluids: an Eulerian/Semi-Lagrangian Non-Hydrostatic Model for Stratified Flows , 1997 .
[17] Bernd Kärcher,et al. Role of aircraft soot emissions in contrail formation , 2009 .
[18] Influence of vortex dynamics and atmospheric turbulence on the early evolution of a contrail , 2010 .
[19] S. Crow. Stability theory for a pair of trailing vortices , 1970 .
[20] R. Sussmann,et al. Lidar and numerical studies on the different evolution of vortex pair and secondary wake in young contrails , 1999 .
[21] Frank Holzäpfel,et al. Probabilistic Two-Phase Aircraft Wake-Vortex Model: Further Development and Assessment , 2006 .
[22] T. Poinsot,et al. Contrail formation in aircraft wakes , 2004, Journal of Fluid Mechanics.
[23] P. Spichtinger,et al. Cirrus clouds triggered by radiation, a multiscale phenomenon , 2010 .
[24] H. Auvermann,et al. Response characteristics of knollenberg light-scattering aerosol counters , 1979 .
[25] P. Hobbs. The Aggregation of Ice Particles in Clouds and Fogs at Low Temperatures , 1965 .
[26] U. Lohmann,et al. Orographic cirrus in a future climate , 2009 .
[27] K. Gierens,et al. The evolution of contrail microphysics in the vortex phase , 2008 .
[28] Simon Unterstraßer. Numerische Simulationen von Kondensstreifen und deren Übergang in Zirren , 2008 .
[29] W. Cotton,et al. Parameterization of ice crystal conversion processes due to vapor deposition for mesoscale models using double-moment basis functions. Part I: basic formulation and parcel model results , 1995 .
[30] Eter,et al. The evolution of contrail microphysics in the vortex phase , 2008 .
[31] K. Gierens,et al. Numerical simulations of contrail-to-cirrus transition – Part 2: Impact of initial ice crystal number, radiation, stratification, secondary nucleation and layer depth , 2009 .
[32] K. Gierens,et al. Numerical simulations of contrail-to-cirrus transition – Part 1: An extensive parametric study , 2009 .