A Memetic Algorithm for Matching Spatial Configurations With the Histograms of Forces

In this paper, we present an approach for modeling and comparing small sets of 2-D objects based on their spatial relationships. This situation can arise in the conflation of a hand- or machine-drafted map to a satellite image, or in the correspondence problem of matching two images taken under different viewing conditions. We focus on the specific problem of matching a sketched map containing several 2-D objects to hand-segmented satellite imagery. We define a similarity measure between the spatial configurations of two object sets, which uses attributed relational graphs to represent scene information. Objects are represented as graph nodes and edges are defined by the histograms of forces between object pairs. We develop a memetic algorithm based on a (μ+λ) evolution strategy to solve this scene-matching problem with three domain-specific local search operators that are compared experimentally.

[1]  F. Godoy,et al.  A Quantitative Description of Spatial Configurations , 2002 .

[2]  Vijay V. Raghavan,et al.  Design and evaluation of algorithms for image retrieval by spatial similarity , 1995, TOIS.

[3]  P. Matsakis,et al.  The use of force histograms for affine-invariant relative position description , 2004 .

[4]  Dimitris Papadias,et al.  Fast retrieval of similar configurations , 2003, IEEE Trans. Multim..

[5]  King-Sun Fu,et al.  An Image Understanding System Using Attributed Symbolic Representation and Inexact Graph-Matching , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Alberto Del Bimbo,et al.  The computational aspect of retrieval by spatial arrangement , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[7]  James M. Keller,et al.  Object set matching with an evolutionary algorithm , 2011, 2011 IEEE Symposium on Computational Intelligence for Security and Defense Applications (CISDA).

[8]  Alok Singh,et al.  A hybrid heuristic for the maximum clique problem , 2006, J. Heuristics.

[9]  Nicholas I. Fisher,et al.  Statistical Analysis of Circular Data , 1993 .

[10]  Kay Chen Tan,et al.  A Multi-Facet Survey on Memetic Computation , 2011, IEEE Transactions on Evolutionary Computation.

[11]  King-Sun Fu,et al.  Error-Correcting Isomorphisms of Attributed Relational Graphs for Pattern Analysis , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[12]  Pablo Moscato,et al.  A Gentle Introduction to Memetic Algorithms , 2003, Handbook of Metaheuristics.

[13]  Laurent Wendling,et al.  A New Way to Represent the Relative Position between Areal Objects , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[15]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[16]  James M. Keller,et al.  Mapping natural language to imagery: Placing objects intelligently , 2009, 2009 IEEE International Conference on Fuzzy Systems.

[17]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[18]  Elena Marchiori,et al.  How to handle constraints with evolutionary algorithms , 2001 .

[19]  Marjorie Skubic,et al.  Qualitative analysis of sketched route maps: translating a sketch into linguistic descriptions , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[20]  Manoj Kumar Tiwari,et al.  Solving Part-Type Selection and Operation Allocation Problems in an FMS: An Approach Using Constraints-Based Fast Simulated Annealing Algorithm , 2006, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[21]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[22]  Max J. Egenhofer,et al.  Similarity of Spatial Scenes , 1998 .

[23]  Roberto Marcondes Cesar Junior,et al.  On the ternary spatial relation "Between" , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[24]  M.C. Riff-Rojas,et al.  Evolutionary search guided by the constraint network to solve CSP , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[25]  Xin Yao,et al.  Evolving artificial neural networks , 1999, Proc. IEEE.

[26]  Ozy Sjahputera,et al.  Linguistic description of relative positions in images , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[27]  Possibilistic C-Means in Scene Matching , 2005, EUSFLAT Conf..

[28]  James M. Keller,et al.  A modified genetic algorithm for matching building sets with the histograms of forces , 2010, IEEE Congress on Evolutionary Computation.

[29]  Max J. Egenhofer,et al.  Query Processing in Spatial-Query-by-Sketch , 1997, J. Vis. Lang. Comput..

[30]  B. N. Chatterji,et al.  An FFT-based technique for translation, rotation, and scale-invariant image registration , 1996, IEEE Trans. Image Process..

[31]  Max J. Egenhofer,et al.  Spatial‐Scene Similarity Queries , 2008, Trans. GIS.

[32]  Xin Yao,et al.  Memetic Algorithm With Extended Neighborhood Search for Capacitated Arc Routing Problems , 2009, IEEE Transactions on Evolutionary Computation.

[33]  Ozy Sjahputera,et al.  Scene matching using F-histogram-based features with possibilistic C-means optimization , 2007, Fuzzy Sets Syst..

[34]  James Smith,et al.  A tutorial for competent memetic algorithms: model, taxonomy, and design issues , 2005, IEEE Transactions on Evolutionary Computation.

[35]  Anthony G. Cohn,et al.  Qualitative Spatial Representation and Reasoning: An Overview , 2001, Fundam. Informaticae.

[36]  M. Andrea Rodríguez,et al.  A genetic algorithm for searching spatial configurations , 2005, IEEE Transactions on Evolutionary Computation.

[37]  Vipin Kumar,et al.  Algorithms for Constraint-Satisfaction Problems: A Survey , 1992, AI Mag..