The Pure Rotational Line Emission of Ortho-Water Vapor in Comets. I. Radiative Transfer Model

We present a numerical model for the simulation of water line emission in cometary coma. The model is based on a spherically symmetric density distribution with a constant expansion velocity (Haser model) and the Monte Carlo radiative transfer code published by Hogerheijde & van der Tak. It includes the seven lowest rotational levels of ortho-water, which are the primarily populated levels in the rotationally cold gas of the coma. We discuss the main excitation mechanisms for ortho-water in the coma and study their relative contribution as a function of distance from the comet nucleus. The model is used to derive the water production rate from observations made with the Submillimeter Wave Astronomy Satellite toward comet C/1999 T1 (McNaught-Hartley). They differ from the water production rates derived with an independent model by less than 20% and thus agree within the larger uncertainty due to the limited signal-to-noise ratio of the observations. We give predictions for spectral line observations of H2O and H218O in comets with present and future airborne and space observatories, including ESA's Herschel Space Observatory and the Stratospheric Observatory for Infrared Astronomy (SOFIA). These models cover a range of water vapor production rates (1027-1029 s-1) and heliocentric distances (1-3 AU) and demonstrate that water line emission can be easily detected with Herschel.

[1]  M. Harwit,et al.  The Submillimeter Wave Astronomy Satellite: Science Objectives and Instrument Description , 1998, Astronomical Telescopes and Instrumentation.

[2]  A Survey of Organic Volatile Species in Comet C/1999 H1 (Lee) Using NIRSPEC at the Keck Observatory , 2000 .

[3]  W. Huebner,et al.  Solar photo rates for planetary atmospheres and atmospheric pollutants , 1984 .

[4]  Rettig,et al.  Detection of CO and Ethane in Comet 21P/Giacobini-Zinner: Evidence for Variable Chemistry in the Outer Solar Nebula , 2000, The Astrophysical journal.

[5]  D. Mendis,et al.  The dynamics and thermodynamics of a dusty cometary atmosphere. , 1984 .

[6]  Christine D. Wilson,et al.  Highlights from the first year of Odin observations , 2003 .

[7]  E. Lellouch,et al.  Carbon Monoxide Outgassing from Comet P/Schwassmann-Wachmann 1 , 1995 .

[8]  Michael J. Mumma,et al.  REMOTE INFRARED OBSERVATIONS OF PARENT VOLATILES IN COMETS: A WINDOW ON THE EARLY SOLAR SYSTEM , 2003 .

[9]  P. Feldman,et al.  Solar Flux Variability and the Lifetimes of Cometary H2O and OH , 1994 .

[10]  M. A’Hearn,et al.  The Neutral Coma , 1990 .

[11]  F. von Schéele,et al.  The Odin orbital observatory , 2003 .

[12]  P. Feldman,et al.  Far Ultraviolet Spectroscopic Explorer Observations of CO and H2 Emission in Comet C/2001 A2 (LINEAR) , 2002 .

[13]  Francis J. Lovas,et al.  NIST Recommended Rest Frequencies for Observed Interstellar Molecular Microwave Transitions -- 2002 Revision , 1986 .

[14]  Robert L. Millis,et al.  The ensemble properties of comets: Results from narrowband photometry of 85 comets , 1995 .

[15]  A. A. Chursin,et al.  The 1997 spectroscopic GEISA databank , 1999 .

[16]  T. Clark,et al.  Radio detection of H2O in comet Bradfield (1974b) , 1976 .

[17]  Alwyn Wootten,et al.  Deuterated Water in Comet C/1996 B2 (Hyakutake) and Its Implications for the Origin of Comets☆ , 1998 .

[18]  T. Owen,et al.  A determination of the HDO/H2O ratio in comet C/1995 O1 (Hale-Bopp). , 1998, Science.

[19]  G. W. King,et al.  Expected Microwave Absorption Coefficients of Water and Related Molecules , 1947 .

[20]  Post-perihelion SWAS Observations of Water Vapor in the Coma of Comet C/1999 H1 (Lee) , 2001 .

[21]  Dominic J. Benford,et al.  Long-term Evolution of the Outgassing of Comet Hale-Bopp From Radio Observations , 1997 .

[22]  J. Tennyson,et al.  Water production and release in Comet 153P/Ikeya-Zhang (C/2002 C1): accurate rotational temperature retrievals from hot-band lines near 2.9-μm , 2004 .

[23]  C. Cecchi-Pestellini,et al.  H2O-H2O Collision Rate Coefficients , 2000 .

[24]  D. Lis,et al.  Spectroscopic Observations of Comet C/1999 H1 (Lee) with the SEST, JCMT, CSO, IRAM, and NanÇay Radio Telescopes , 2000, The Astronomical Journal.

[25]  Y. Itikawa Rotational Transition in an Asymmetric-Top Molecule by Electron Collision: Applications to H 2 O and H 2 CO , 1972 .

[26]  H. Müller,et al.  Submillimeter, millimeter, and microwave spectral line catalog. , 1985, Applied optics.

[27]  M. DiSanti,et al.  Production of ethane and water in comet C/1996 B2 Hyakutake , 2002 .

[28]  Emmanuel Lellouch,et al.  The Spectrum of Comet Hale-Bopp (C/1995 O1) Observed with the Infrared Space Observatory at 2.9 Astronomical Units from the Sun , 1997, Science.

[29]  W. Jackson,et al.  Mosaicked Images and Spectra of J = 1 → 0 HCN and HCO+ Emission from Comet Hale-Bopp (1995 O1) , 1998 .

[30]  M. Mumma,et al.  The Effect of Electron Collisions on Rotational Populations of Cometary Water , 1992 .

[31]  R. Moreno,et al.  Spectroscopic Monitoring of Comet C/1996 B2 (Hyakutake) with the JCMT and IRAM Radio Telescopes , 1999 .

[32]  W. Harris,et al.  Large-Aperture [O I] 6300 Å Photometry of Comet Hale-Bopp: Implications for the Photochemistry of OH , 2001 .

[33]  S. Kwok,et al.  Observations of water in comets with Odin , 2003 .

[34]  John K. Davies,et al.  The outgassing and composition of Comet 19P/Borrelly from radio observations , 2004 .

[35]  M. Harwit,et al.  Submillimeter Wave Astronomy Satellite Observations of Water Vapor toward Comet C/1999 H1 (Lee) , 2000 .

[36]  J. Crovisier Water in Comets: Observations and Models , 2002 .

[37]  E. Bergin,et al.  Submillimeter Wave Astronomy Satellite Monitoring of the Postperihelion Water Production Rate of Comet C/1999 T1 (MCNaught-Hartley) , 2004 .

[38]  C. Cosmovici,et al.  The puzzling detection of the 22 GHz water emission line in Comet Hyakutake at perihelion , 1998 .

[39]  F. Schloerb,et al.  HCO+ Imaging of Comet Hale-Bopp (C/1995 O1) , 1998, The Astrophysical journal.

[40]  Jonas Zmuidzinas,et al.  CASIMIR: a submillimeter heterodyne spectrometer for SOFIA , 2000, Astronomical Telescopes and Instrumentation.

[41]  R. Sagdeev,et al.  A new model of cometary ionospheres , 1987 .