Current land use is a poor predictor of hellbender occurrence: why assumptions matter when predicting distributions of data‐deficient species

Aim Understanding species distributions is fundamental to effective conservation planning. Data deficiency is common among rare and imperiled species and poses challenges for conservation planning because status assessments become reliant on scant data that can introduce bias. We used occupancy modelling to evaluate support for commonly accepted, but previously untested, hypotheses regarding factors that drive the occurrence of an imperiled and data-deficient amphibian, the eastern hellbender (Cryptobranchus alleganiensis). We investigated the potential for mismatch between areas likely to be identified as having high conservation priority based on the common assumption that hellbender occurrence corresponds to areas of high forest cover and those identified by well-informed models.

[1]  M. Boyce,et al.  Evaluating resource selection functions , 2002 .

[2]  C. Mays,et al.  A Study of the Ozark Hellbender Cryptobranchus Alleganiensis Bishopi , 1973 .

[3]  R. Utz,et al.  Regional differences in patterns of fish species loss with changing land use. , 2010 .

[4]  S. Price,et al.  Effects of Urbanization on Occupancy of Stream Salamanders , 2011, Conservation biology : the journal of the Society for Conservation Biology.

[5]  R. G. Davies,et al.  Methods to account for spatial autocorrelation in the analysis of species distributional data : a review , 2007 .

[6]  A. Olsen,et al.  Spatially Balanced Sampling of Natural Resources , 2004 .

[7]  Tony Olsen,et al.  Spatial Survey Design and Analysis , 2015 .

[8]  Mevin B. Hooten,et al.  A guide to Bayesian model selection for ecologists , 2015 .

[9]  W. Thompson Sampling rare or elusive species : concepts, designs, and techniques for estimating population parameters , 2004 .

[10]  Dana K. Wingfield,et al.  Using Expert Opinion Surveys to Rank Threats to Endangered Species: A Case Study with Sea Turtles , 2010, Conservation biology : the journal of the Society for Conservation Biology.

[11]  G. Allen,et al.  Freshwater Ecoregions of the World: A New Map of Biogeographic Units for Freshwater Biodiversity Conservation , 2008 .

[12]  N. Yoccoz Occupancy Estimation and Modeling. Inferring patterns and dynamics of species occurrence , 2006 .

[13]  Brittney H. Coe,et al.  Haematological and immunological characteristics of eastern hellbenders (Cryptobranchus alleganiensis alleganiensis) infected and co-infected with endo- and ectoparasites , 2016, Conservation physiology.

[14]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[15]  V. H. Hutchison,et al.  Aquatic Respiration: An Unusual Strategy in the Hellbender Cryptobranchus alleganiensis alleganiensis (Daudin) , 1973, Science.

[16]  D. L. Nelms,et al.  Base-flow characteristics of streams in the Valley and Ridge, Blue Ridge, and Piedmont physiographic provinces of Virginia , 1995 .

[17]  N. M. Fenneman,et al.  Physiographic divisions of the United States , 1905 .

[18]  G. Cumming Using between‐model comparisons to fine‐tune linear models of species ranges , 2000 .

[19]  J. Andrew Royle,et al.  Hierarchical Modeling and Inference in Ecology: The Analysis of Data from Populations, Metapopulations and Communities , 2008 .

[20]  R. Utz,et al.  Identifying regional differences in threshold responses of aquatic invertebrates to land cover gradients , 2009 .

[21]  K. Krysko,et al.  Surveying for hellbender salamanders, Cryptobranchus alleganiensis (Daudin): A review and critique , 2003 .

[22]  A. McMillan,et al.  Population Status of Hellbender Salamanders (Cryptobranchus alleganiensis) in the Allegheny River Drainage of New York State , 2009 .

[23]  Andrew Thomas,et al.  WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..

[24]  Kenneth M. Johnson,et al.  Rural land-use trends in the conterminous United States, 1950-2000 , 2005 .

[25]  Thomas Lengauer,et al.  ROCR: visualizing classifier performance in R , 2005, Bioinform..

[26]  Bruce B. Collette,et al.  The Impact of Conservation on the Status of the World’s Vertebrates , 2010, Science.

[27]  A. K. Davis,et al.  Evidence of ectoparasite-induced endocrine disruption in an imperiled giant salamander, the eastern hellbender (Cryptobranchus alleganiensis) , 2015, The Journal of Experimental Biology.

[28]  Robert A. Gitzen,et al.  Postrelease Movements of Captive-Reared Ozark Hellbenders (Cryptobranchus alleganiensis bishopi) , 2012 .

[29]  David D. Grandmaison,et al.  EASTERN HELLBENDER STATUS ASSESSMENT REPORT , 2003 .

[30]  T. Sutton,et al.  Spatial Ecology of the Eastern Hellbender (Cryptobranchus alleganiensis alleganiensis) in Indiana , 2011 .

[31]  Hugh P. Possingham,et al.  Prioritizing choices in conservation , 2007 .

[32]  R. Bailey,et al.  Selecting objectively defined reference sites for stream bioassessment programs , 2010, Environmental monitoring and assessment.

[33]  B. Letcher,et al.  Distance, flow and PCR inhibition: eDNA dynamics in two headwater streams , 2015, Molecular ecology resources.

[34]  L. Puckett,et al.  Factors controlling the major ion chemistry of streams in the blue ridge and valley and ridge physiographic provinces of Virginia and Maryland , 1992 .

[35]  M. Hall,et al.  Multiscale Factors Influencing Distribution of the Eastern Hellbender Salamander (Cryptobranchus alleganiensis alleganiensis) in the Northern Segment of Its Range , 2013 .

[36]  B. Rossaro,et al.  Landscape-stream interactions and habitat conservation for amphibians. , 2011, Ecological applications : a publication of the Ecological Society of America.

[37]  R. D. Williams,et al.  THE HELLBENDER: A NONGAME SPECIES IN NEED OF MANAGEMENT1 , 2012 .

[38]  Bertram G. Smith,et al.  THE LIFE HISTORY AND HABITS OF CRYPTOBRANCHUS ALLEGHENIENSIS , 1907 .

[39]  J. Allan Landscapes and Riverscapes: The Influence of Land Use on Stream Ecosystems , 2004 .

[40]  Eren Turak,et al.  Freshwater conservation planning: the case for systematic approaches , 2011 .

[41]  C. J. Huberty,et al.  Applied Discriminant Analysis , 1994 .

[42]  J. Peterson,et al.  Stream fish occurrence in response to impervious cover, historic land use, and hydrogeomorphic factors , 2008 .

[43]  C. Guyer,et al.  Differential responses of amphibians and reptiles in riparian and stream habitats to land use disturbances in western Georgia, USA , 2008 .

[44]  David R. Anderson,et al.  Avoiding pitfalls when using information-theoretic methods , 2002 .

[45]  C. Goldberg,et al.  Moving environmental DNA methods from concept to practice for monitoring aquatic macroorganisms , 2015 .

[46]  J. Millspaugh,et al.  Habitat attributes associated with short-term settlement of Ozark hellbender (Cryptobranchus alleganiensis bishopi) salamanders following translocation to the wild , 2012 .

[47]  R. B. Jackson,et al.  Global biodiversity scenarios for the year 2100. , 2000, Science.

[48]  Andrew Gelman,et al.  R2WinBUGS: A Package for Running WinBUGS from R , 2005 .

[49]  C. Wentworth A Scale of Grade and Class Terms for Clastic Sediments , 1922, The Journal of Geology.

[50]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[51]  K. Krysko,et al.  HABITAT DIFFERENCES AFFECTING AGE CLASS DISTRIBUTIONS OF THE HELLBENDER SALAMANDER, CRYPTOBRANCHUS ALLEGANIENSIS , 2003 .

[52]  C. Metz Basic principles of ROC analysis. , 1978, Seminars in nuclear medicine.

[53]  E. F. Hollyday,et al.  Summary of the hydrogeology of the valley and ridge, Blue Ridge, and Piedmont physiographic provinces in the eastern United States , 2004 .

[54]  R. Wilkinson,et al.  Age and Growth of Hellbenders in the Niangua River, Missouri , 1975 .

[55]  John Van Sickle,et al.  PROJECTING THE BIOLOGICAL CONDITION OF STREAMS UNDER ALTERNATIVE SCENARIOS OF HUMAN LAND USE , 2004 .

[56]  Joanna B. Whittier,et al.  Environmental drivers of fish functional diversity and composition in the Lower Colorado River Basin , 2010 .

[57]  William E. Moser,et al.  Morphological and molecular characterization of a new species of leech (Glossiphoniidae, Hirudinida): Implications for the health of its imperiled amphibian host (Cryptobranchus alleganiensis) , 2014, ZooKeys.

[58]  A. Mathis,et al.  Population declines of a long-lived salamander: a 20+-year study of hellbenders, Cryptobranchus alleganiensis , 2003 .

[59]  M. Kennard,et al.  Assessing the risks and opportunities of presence‐only data for conservation planning , 2015 .

[60]  Darryl I. MacKenzie,et al.  Designing occupancy studies: general advice and allocating survey effort , 2005 .

[61]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[62]  S. DuRant,et al.  Innate immunity and stress physiology of eastern hellbenders (Cryptobranchus alleganiensis) from two stream reaches with differing habitat quality. , 2011, General and comparative endocrinology.

[63]  Shanshan Wu,et al.  Building statistical models to analyze species distributions. , 2006, Ecological applications : a publication of the Ecological Society of America.

[64]  M. Wolman A method of sampling coarse river‐bed material , 1954 .

[65]  Sumio Watanabe,et al.  Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory , 2010, J. Mach. Learn. Res..

[66]  J. Feminella Correspondence between stream macroinvertebrate assemblages and 4 ecoregions of the southeastern USA , 2000, Journal of the North American Benthological Society.

[67]  D. Strayer,et al.  Freshwater biodiversity conservation: recent progress and future challenges , 2010, Journal of the North American Benthological Society.

[68]  T. Pauley,et al.  Life History of the Hellbender, Cryptobranchus alleganiensis, in a West Virginia Stream , 2005 .

[69]  R. Abell Conservation Biology for the Biodiversity Crisis: a Freshwater Follow‐up , 2002 .

[70]  Darryl I MacKenzie,et al.  Sampling design trade-offs in occupancy studies with imperfect detection: examples and software. , 2007, Ecological applications : a publication of the Ecological Society of America.

[71]  J. Andrew Royle,et al.  ESTIMATING SITE OCCUPANCY RATES WHEN DETECTION PROBABILITIES ARE LESS THAN ONE , 2002, Ecology.

[72]  P. Angermeier,et al.  characterizing fish community diversity across virginia landscapes: prerequisite for conservation , 1999 .

[73]  R. Abell,et al.  Prospects for monitoring freshwater ecosystems towards the 2010 targets , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[74]  G. Allen,et al.  Freshwater ecoregions of the world , 2008 .

[75]  J. Andrew Royle,et al.  Presence‐only modelling using MAXENT: when can we trust the inferences? , 2013 .

[76]  D. Tilman,et al.  The Importance of Land-Use Legacies to Ecology and Conservation , 2003 .