In vivo skin imaging prototypes “made in Latvia”

This paper briefly reviews the operational principles and designs of portable in vivo skin imaging prototypes developed at the Biophotonics Laboratory of the Institute of Atomic Physics and Spectroscopy, University of Latvia. Four types of imaging devices are presented. Multi-spectral imagers ensure distant mapping of specific skin parameters (e.g., distribution of skin chromophores). Autofluorescence photobleaching rate imagers show potential for skin tumor assessment and margin delineation. Photoplethysmography video-imagers remotely detect cutaneous blood pulsations and provide real-time information on the human cardiovascular state. Multimodal skin imagers perform the above-mentioned functions by acquiring several spectral and video images using the same image sensor.

[1]  Inesa Ferulova,et al.  Autofluorescence imaging of basal cell carcinoma by smartphone RGB camera. , 2015, Journal of biomedical optics.

[2]  Janis Spigulis,et al.  Clinical evaluation of melanomas and common nevi by spectral imaging , 2012, Biomedical optics express.

[3]  J. Spigulis,et al.  Biophotonic technologies for non-invasive assessment of skin condition and blood microcirculation , 2012 .

[4]  Janis Spigulis,et al.  Photoplethysmography imaging algorithm for continuous monitoring of regional anesthesia , 2016, 2016 14th ACM/IEEE Symposium on Embedded Systems For Real-time Multimedia (ESTIMedia).

[5]  Ilze Lihacova,et al.  Skin chromphore mapping by means of a modified video-microscope for skin malformation diagnosis , 2013, Optics & Photonics - Optical Engineering + Applications.

[6]  U. Rubins,et al.  Multispectral assessment of skin malformations using a modified video-microscope , 2012 .

[7]  D Jakovels,et al.  APPLICATION OF LASERS AND LASER-OPTICAL METHODS IN LIFE SCIENCES Low power cw-laser signatures on human skin , 2011 .

[8]  Janis Spigulis,et al.  SkImager: a concept device forin-vivoskin assessment by multimodal imaging , 2014 .

[9]  Janis Spigulis,et al.  Snapshot RGB mapping of skin melanin and hemoglobin. , 2015, Journal of biomedical optics.

[10]  Janis Spigulis,et al.  Real-Time Photoplethysmography Imaging System , 2011 .

[11]  Janis Spigulis,et al.  Study of smartphone suitability for mapping of skin chromophores. , 2015, Journal of biomedical optics.

[12]  Janis Spigulis,et al.  Mobile platform for online processing of multimodal skin optical images: Using online Matlab server for processing remission, fluorescence and laser speckle images, obtained by using novel handheld device , 2015, 2015 International Conference on BioPhotonics (BioPhotonics).

[13]  Janis Spigulis,et al.  Express RGB mapping of three to five skin chromophores , 2017, European Conference on Biomedical Optics.

[14]  Janis Spigulis,et al.  RGB IMAGING DEVICE FOR MAPPING AND MONITORING OF HEMOGLOBIN DISTRIBUTION IN SKIN , 2012 .

[15]  Zbignevs Marcinkevics,et al.  Imaging photoplethysmography for clinical assessment of cutaneous microcirculation at two different depths , 2016, Journal of biomedical optics.

[16]  Janis Spigulis,et al.  Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination , 2017, Journal of biomedical optics.

[17]  Alexander A. Stratonnikov,et al.  Photobleaching of endogenous fluorochroms in tissues in vivo during laser irradiation , 2001, Saratov Fall Meeting.

[18]  Janis Spigulis,et al.  Application of colour magnification technique for revealing skin microcirculation changes under regional anaesthetic input , 2013, Biophotonics-Riga.

[19]  Janis Spigulis,et al.  Multi-spectral skin imaging by a consumer photo-camera , 2010, BiOS.

[20]  J. Spigulis Optical noninvasive monitoring of skin blood pulsations , 2005 .

[21]  Janis Spigulis,et al.  Single snapshot RGB multispectral imaging at fixed wavelengths: proof of concept , 2014, Photonics West - Biomedical Optics.

[22]  John Allen Photoplethysmography and its application in clinical physiological measurement , 2007, Physiological measurement.

[23]  Janis Spigulis,et al.  Imaging of laser-excited tissue autofluorescence bleaching rates. , 2009, Applied optics.

[24]  Janis Spigulis,et al.  Noncontact monitoring of vascular lesion phototherapy efficiency by RGB multispectral imaging , 2013, Journal of biomedical optics.

[25]  Janis Spigulis,et al.  Skin autofluorescence photo-bleaching and photo-memory , 2011, European Conference on Biomedical Optics.

[26]  Janis Spigulis,et al.  Benign — A typical nevi discrimination using diffuse reflectance and fluorescence multispectral imaging system , 2015, 2015 International Conference on BioPhotonics (BioPhotonics).

[27]  T. Sarna,et al.  The Physical Properties of Melanins , 2007 .

[28]  Janis Spigulis,et al.  RGB mapping of hemoglobin distribution in skin , 2011, European Conference on Biomedical Optics.

[29]  Janis Spigulis,et al.  Simultaneous recording of skin blood pulsations at different vascular depths by multiwavelength photoplethysmography. , 2007, Applied optics.

[30]  U. Rubins,et al.  Multispectral Video-Microscope Modified for Skin Diagnostics , 2014 .

[31]  Janis Spigulis,et al.  A device for multimodal imaging of skin , 2013, Photonics West - Biomedical Optics.

[32]  Janis Spigulis,et al.  2-D mapping of skin chromophores in the spectral range 500 - 700 nm. , 2010, Journal of biophotonics.