Maneuvering Behavior of Ships in Irregular Waves

Ship maneuvering in waves is analyzed by using a unified seakeeping and maneuvering two-time scale model in irregular sea that has been applied by Skejic and Faltinsen [1] for regular waves. The irregular wave effects are accounted for by Newman’s [2] approximation of the slow-drift 2nd order wave loads valid for deep water (Faltinsen [3], Pinkster [29]).The modular type maneuvering model (MMG model) based on Soding’s [4] nonlinear slender-body theory is used for the maneuvering analysis. Forces and moments due to rudder, propeller, and viscous cross-flow are accounted for as presented by Skejic and Faltinsen [1] and Yasukawa [5, 6]. In particular, the behavior of the propulsive coefficients (the thrust deduction and wake fraction) in waves (Faltinsen et al. [7], Faltinsen and Minsaas [8]) are discussed from the perspective of ship maneuvering characteristics in both regular and irregular wave environments.The unified model of seakeeping and maneuvering for deep-water irregular waves is validated for the ‘S7-175’ (‘SR 108’) container ship in calm water and regular deep-water wave scenarios by comparison with experimental results by Yasukawa [5, 6]. The maneuvering model is applied to a ‘MARINER’ ship performing turning maneuver in irregular waves. The obtained results of the ships main maneuvering parameters are discussed from a statistical point of view.© 2013 ASME