Topological gradient in structural optimization under stress and buckling constraints

Abstract Structural topology optimization aims to design mechanical structures by seeking the optimal material layout within a given design space. Within this framework, this paper addresses the minimization of the structural mass under stress and buckling constraints, formulated as a nonlinear combinatorial optimization problem. An algorithm is proposed for such a problem, that follows a topological gradient-based approach. The adjoint method is applied to efficiently compute the constraint gradients. An iterative algorithm for buckling analysis, featuring low memory requirements, is also proposed. Numerical results, including a real application arising in the aeronautical field, illustrate the efficiency of the two proposed algorithms.

[1]  Ilse C. F. Ipsen Computing an Eigenvector with Inverse Iteration , 1997, SIAM Rev..

[2]  Marco Montemurro,et al.  NURBS hyper-surfaces for 3D topology optimization problems , 2019, Mechanics of Advanced Materials and Structures.

[3]  Jan Sokolowski,et al.  On the Topological Derivative in Shape Optimization , 1999 .

[4]  Alain Remouchamps,et al.  Discussion on some convergence problems in buckling optimisation , 2008 .

[5]  S. Timoshenko Theory of Elastic Stability , 1936 .

[6]  Liang Gao,et al.  Isogeometric topology optimization for computational design of re-entrant and chiral auxetic composites , 2020, Computer Methods in Applied Mechanics and Engineering.

[7]  K. Suresh,et al.  Multi-constrained topology optimization via the topological sensitivity , 2015, ArXiv.

[8]  Konstantinos Daniel Tsavdaridis,et al.  Applications of topology optimisation in structural engineering: high-rise buildings & steel components , 2015 .

[9]  Evgueni E. Ovtchinnikov,et al.  Computing several eigenpairs of Hermitian problems by conjugate gradient iterations , 2008, J. Comput. Phys..

[10]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[11]  Ole Sigmund,et al.  New Developments in Handling Stress Constraints in Optimal Material Distributions , 1998 .

[12]  Nicolas Perry,et al.  Maximum length scale requirement in a topology optimisation method based on NURBS hyper-surfaces , 2019, CIRP Annals.

[13]  Krishnan Suresh,et al.  Stress-constrained topology optimization: a topological level-set approach , 2013, Structural and Multidisciplinary Optimization.

[14]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[15]  Marco Montemurro,et al.  Structural Displacement Requirement in a Topology Optimization Algorithm Based on Isogeometric Entities , 2019, J. Optim. Theory Appl..

[16]  Frédéric Guyomarc'h,et al.  A Deflated Version of the Conjugate Gradient Algorithm , 1999, SIAM J. Sci. Comput..

[17]  K. Suresh,et al.  Topology optimization under thermo-elastic buckling , 2017, ArXiv.

[18]  Krishnan Suresh,et al.  A 199-line Matlab code for Pareto-optimal tracing in topology optimization , 2010 .

[19]  G. Allaire A review of adjoint methods for sensitivity analysis, uncertainty quantification and optimization in numerical codes , 2015 .

[20]  Sonia Calvel,et al.  Conception d'organes automobiles par optimisation topologique , 2004 .

[21]  Esben Lindgaard,et al.  On compliance and buckling objective functions in topology optimization of snap-through problems , 2013 .

[22]  Amir M. Mirzendehdel,et al.  A Pareto-Optimal Approach to Multimaterial Topology Optimization , 2015 .

[23]  Jennifer A. Scott,et al.  Level‐set topology optimization with many linear buckling constraints using an efficient and robust eigensolver , 2016 .

[24]  K. Suresh,et al.  Assembly-Free Buckling Analysis for Topology Optimization , 2015 .

[25]  T. Hughes,et al.  An element-by-element solution algorithm for problems of structural and solid mechanics , 1983 .

[26]  Julián A. Norato,et al.  Adaptive Mesh Refinement for Topology Optimization with Discrete Geometric Components , 2019, Computer Methods in Applied Mechanics and Engineering.

[27]  G. Golub,et al.  Inexact Inverse Iteration for Generalized Eigenvalue Problems , 2000 .

[28]  Zongde Fang,et al.  Large-scale buckling-constrained topology optimization based on assembly-free finite element analysis , 2017 .

[29]  Xiaoming Wang,et al.  A level set method for structural topology optimization , 2003 .

[30]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[31]  Olivier Bruls,et al.  Topology and generalized shape optimization: Why stress constraints are so important? , 2008 .

[32]  O. Company,et al.  Skeleton arc additive manufacturing with closed loop control , 2019, Additive Manufacturing.

[33]  Ramana V. Grandhi,et al.  A survey of structural and multidisciplinary continuum topology optimization: post 2000 , 2014 .

[34]  K. Suresh Efficient generation of large-scale pareto-optimal topologies , 2013 .

[35]  G. Kreisselmeier,et al.  SYSTEMATIC CONTROL DESIGN BY OPTIMIZING A VECTOR PERFORMANCE INDEX , 1979 .

[36]  Marco Montemurro,et al.  Eigen-frequencies and harmonic responses in topology optimisation: A CAD-compatible algorithm , 2020 .

[37]  Krishnan Suresh,et al.  An Adaptive Weighting Strategy for Multi-Load Topology Optimization , 2012 .

[38]  M. M. Neves,et al.  Generalized topology design of structures with a buckling load criterion , 1995 .

[39]  J. Cea,et al.  The shape and topological optimizations connection , 2000 .

[40]  Marco Montemurro,et al.  Minimum length scale control in a NURBS-based SIMP method , 2019, Computer Methods in Applied Mechanics and Engineering.

[41]  Liyong Tong,et al.  Structural topology optimization for maximum linear buckling loads by using a moving iso-surface threshold method , 2015 .

[42]  Krishnan Suresh,et al.  Hinge-Free Compliant Mechanism Design Via the Topological Level-Set , 2013 .

[43]  Liang Gao,et al.  A NURBS-based Multi-Material Interpolation (N-MMI) for isogeometric topology optimization of structures , 2020 .

[44]  Yi Min Xie,et al.  Evolutionary Topology Optimization of Continuum Structures: Methods and Applications , 2010 .

[45]  J. Petersson,et al.  Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima , 1998 .

[46]  Krishnan Suresh,et al.  Large Scale Finite Element Analysis Via Assembly-Free Deflated Conjugate Gradient , 2014, J. Comput. Inf. Sci. Eng..

[47]  Marco Montemurro,et al.  A 2D topology optimisation algorithm in NURBS framework with geometric constraints , 2017, International Journal of Mechanics and Materials in Design.

[48]  Raúl A. Feijóo,et al.  Topological Sensitivity Analysis for Three-dimensional Linear Elasticity Problem , 2007 .

[49]  Kyung K. Choi,et al.  Structural Sensitivity Analysis and Optimization 1: Linear Systems , 2005 .

[50]  Y. Xie,et al.  Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials , 2009 .

[51]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[52]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[53]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[54]  Jennifer A. Scott,et al.  A fast method for binary programming using first‐order derivatives, with application to topology optimization with buckling constraints , 2012 .

[55]  Fred van Keulen,et al.  A unified aggregation and relaxation approach for stress-constrained topology optimization , 2017 .

[56]  Gongfa Chen,et al.  Improving the overall performance of continuum structures: A topology optimization model considering stiffness, strength and stability , 2020 .

[57]  Alain Remouchamps,et al.  Application of a bi-level scheme including topology optimization to the design of an aircraft pylon , 2011 .

[58]  V. Kobelev,et al.  Bubble method for topology and shape optimization of structures , 1994 .

[59]  Yuji Nakasone,et al.  Engineering Analysis with ANSYS Software , 2007 .

[60]  Jihong Zhu,et al.  Topology Optimization in Aircraft and Aerospace Structures Design , 2016 .