Observation of separated dynamics of charge and spin in the Fermi-Hubbard model
暂无分享,去创建一个
Masoud Mohseni | Hartmut Neven | Peter Schmitteckert | Frank Arute | Kunal Arya | Ryan Babbush | Dave Bacon | Sergio Boixo | Bob B. Buckley | Brian Burkett | Nicholas Bushnell | Zijun Chen | Roberto Collins | Sean Demura | Andrew Dunsworth | Edward Farhi | Austin Fowler | Brooks Foxen | Craig Gidney | Marissa Giustina | Rob Graff | Steve Habegger | Matthew P. Harrigan | Sabrina Hong | Trent Huang | Dvir Kafri | Kostyantyn Kechedzhi | Paul V. Klimov | Fedor Kostritsa | David Landhuis | Pavel Laptev | Mike Lindmark | Erik Lucero | Orion Martin | Jarrod R. McClean | Matt McEwen | Anthony Megrant | Wojciech Mruczkiewicz | Matthew Neeley | Murphy Yuezhen Niu | Thomas E. O'Brien | Eric Ostby | Andre Petukhov | Harald Putterman | Nicholas C. Rubin | Daniel Sank | Kevin J. Satzinger | Vadim Smelyanskiy | Doug Strain | Kevin J. Sung | Marco Szalay | Z. Jamie Yao | Adam Zalcman | Charles Neill | John M. Martinis | Michael Newman | Amit Vainsencher | Andreas Bengtsson | Pedram Roushan | Anika Marusczyk | Ofer Naaman | Michael Marthaler | Rami Barends | Alexander N. Korotkov | Joseph C. Bardin | Evan Jeffrey | Josh Mutus | Ben Chiaro | Sergei V. Isakov | Jonathan A. Gross | Lev B. Ioffe | Norm M. Tubman | Chris Quintana | Sebastian Zanker | Jan-Michael Reiner | Nicolas Vogt | Stephen J. Cotton | Zhang Jiang | Trevor McCourt | Sam McArdle | Carlos Mejuto-Zaera | Yu-An Chen | Daniel Eppens | Yu Chen | Michael Broughton | Cody Jones | D. Bacon | H. Neven | M. Mohseni | N. Tubman | J. McClean | E. Lucero | R. Barends | Yu Chen | J. Kelly | A. Megrant | D. Sank | A. Vainsencher | T. White | J. Martinis | E. Farhi | R. Babbush | A. Fowler | B. Chiaro | A. Dunsworth | E. Jeffrey | J. Mutus | M. Neeley | C. Neill | C. Quintana | P. Roushan | A. Korotkov | A. Petukhov | V. Smelyanskiy | S. Boixo | P. Yeh | D. Buell | M. Niu | P. Klimov | K. Arya | B. Burkett | Zijun Chen | R. Collins | B. Foxen | C. Gidney | M. Giustina | R. Graff | Trent Huang | D. Landhuis | O. Naaman | F. Arute | J. Bardin | M. Broughton | B. Buckley | N. Bushnell | W. Courtney | S. Demura | M. Harrigan | A. Ho | Sabrina Hong | L. Ioffe | S. Isakov | Zhang Jiang | Cody Jones | D. Kafri | K. Kechedzhi | Seon Kim | F. Kostritsa | P. Laptev | Mike Lindmark | O. Martin | M. McEwen | W. Mruczkiewicz | E. Ostby | H. Putterman | N. Rubin | K. Satzinger | D. Strain | M. Szalay | Adam Zalcman | T. Eckl | P. Schmitteckert | Sam McArdle | W. Huggins | N. Vogt | S. Zanker | Jan-Michael Reiner | A. Marusczyk | M. Marthaler | T. McCourt | Yu-An Chen | M. Newman | J. Gross | Julian Kelly | David A. Buell | William Courtney | Alan Derk | Thomas Eckl | Catherine Erickson | Alan Ho | William Huggins | Seon Kim | Xiao Mi | B'alint Pat'o | Theodore White | Ping Yeh | A. Bengtsson | Carlos Mejuto-Zaera | A. Derk | D. Eppens | C. Erickson | T. Mccourt | Z. Yao | S. Habegger | T. Huang | T. O’Brien | B. Pat'o | Xiao-Bing Mi | Kevin J Sung | Seon Kim
[1] P. Pieri,et al. Fermi liquids and Luttinger liquids , 2000 .
[2] Daniel Lobser,et al. Experimental Demonstration of a Cheap and Accurate Phase Estimation. , 2017, Physical review letters.
[3] Holland,et al. Interferometric detection of optical phase shifts at the Heisenberg limit. , 1993, Physical review letters.
[4] P. Schmitteckert,et al. Is spin-charge separation observable in a transport experiment? , 2009, 0905.4743.
[5] L. M. K. Vandersypen,et al. Quantum simulation of a Fermi–Hubbard model using a semiconductor quantum dot array , 2017, Nature.
[6] Andrey E. Antipov,et al. Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms , 2015, 1505.02290.
[7] Elliott H. Lieb,et al. Absence of Mott Transition in an Exact Solution of the Short-Range, One-Band Model in One Dimension , 1968 .
[8] Alexei Y. Kitaev,et al. Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..
[9] D. Berry,et al. Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.
[10] Spectral function of the one-dimensional Hubbard model away from half filling. , 2004, Physical review letters.
[11] Shen,et al. Observation of Spin-Charge Separation in One-Dimensional SrCuO2. , 1996, Physical review letters.
[12] H. M. Wiseman,et al. Demonstrating Heisenberg-limited unambiguous phase estimation without adaptive measurements , 2008, 0809.3308.
[13] S. Lloyd,et al. Advances in quantum metrology , 2011, 1102.2318.
[14] Carlton M. Caves,et al. Qubit metrology and decoherence , 2007, 0705.1002.
[15] C. Caves. Quantum Mechanical Noise in an Interferometer , 1981 .
[16] Rainer Blatt,et al. Characterizing large-scale quantum computers via cycle benchmarking , 2019, Nature Communications.
[17] Howard Mark Wiseman,et al. Adaptive single-shot phase measurements: A semiclassical approach , 1997 .
[18] M. Greiner,et al. Site-resolved measurement of the spin-correlation function in the Fermi-Hubbard model , 2016, Science.
[19] Paola Cappellaro,et al. Compressing measurements in quantum dynamic parameter estimation , 2013, 1308.0313.
[20] Yudong Cao,et al. OpenFermion: the electronic structure package for quantum computers , 2017, Quantum Science and Technology.
[21] M. Veldhorst,et al. Nonexponential fidelity decay in randomized benchmarking with low-frequency noise , 2015, 1502.05119.
[22] Jonathan P. Dowling,et al. A quantum Rosetta stone for interferometry , 2002, quant-ph/0202133.
[23] Kevin J. Sung,et al. Quantum algorithms to simulate many-body physics of correlated fermions. , 2017, 1711.05395.
[24] E. Rotenberg,et al. Distinct spinon and holon dispersions in photoemission spectral functions from one-dimensional SrCuO2 , 2006 .
[25] Alán Aspuru-Guzik,et al. Quantum Simulation of Electronic Structure with Linear Depth and Connectivity. , 2017, Physical review letters.
[26] H. Neven,et al. Fluctuations of Energy-Relaxation Times in Superconducting Qubits. , 2018, Physical review letters.
[27] Vadim N. Smelyanskiy,et al. Scaling laws for precision in quantum interferometry and the bifurcation landscape of the optimal state , 2010, 1006.1645.
[28] I. Bloch,et al. Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains , 2016, Science.
[29] Travis S. Humble,et al. Quantum supremacy using a programmable superconducting processor , 2019, Nature.
[30] R. Kosut,et al. Efficient measurement of quantum dynamics via compressive sensing. , 2009, Physical review letters.
[31] S. Bartlett,et al. Quantum methods for clock synchronization: Beating the standard quantum limit without entanglement , 2005, quant-ph/0505112.
[32] Hartmut Neven,et al. The Snake Optimizer for Learning Quantum Processor Control Parameters , 2020, ArXiv.
[33] D. Bacon,et al. Growth and preservation of entanglement in a many-body localized system , 2019, 1910.06024.
[34] Jérôme F Gonthier,et al. An application benchmark for fermionic quantum simulations. , 2020, 2003.01862.
[35] John Preskill,et al. Quantum Algorithms for Quantum Field Theories , 2011, Science.
[36] R. Cleve,et al. Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[37] Emanuel Knill,et al. Quantum gate teleportation between separated qubits in a trapped-ion processor , 2019, Science.
[38] Tyler Y Takeshita,et al. Hartree-Fock on a superconducting qubit quantum computer , 2020, Science.
[39] Daniel Greenbaum,et al. Introduction to Quantum Gate Set Tomography , 2015, 1509.02921.
[40] F. D. M. Haldanef. ‘Luttinger liquid theory’ of one-dimensional quantum fluids: I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas , 1981 .
[41] Shelby Kimmel,et al. Robust Calibration of a Universal Single-Qubit Gate-Set via Robust Phase Estimation , 2015, 1502.02677.
[42] Peter Maunz,et al. Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography , 2016, Nature Communications.
[43] J. M. Luttinger. An Exactly Soluble Model of a Many‐Fermion System , 1963 .
[44] H. Neven,et al. Physical qubit calibration on a directed acyclic graph , 2018, 1803.03226.
[45] F. Haldane,et al. Luttinger liquid theory of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas , 1981 .
[46] L. Glazman,et al. One-dimensional quantum liquids: Beyond the Luttinger liquid paradigm , 2011, 1110.1374.
[47] E. Knill,et al. Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.
[48] Erik Nielsen,et al. Detecting, tracking, and eliminating drift in quantum information processors , 2019, 1907.13608.
[49] Wiseman,et al. Optimal states and almost optimal adaptive measurements for quantum interferometry , 2000, Physical review letters.
[50] Yuan Feng,et al. Parameter Estimation of Quantum Channels , 2008, IEEE Transactions on Information Theory.
[51] Klauder,et al. SU(2) and SU(1,1) interferometers. , 1986, Physical review. A, General physics.
[52] T. M. Rice,et al. Metal‐Insulator Transitions , 2003 .
[53] Yuan Su,et al. Nearly optimal lattice simulation by product formulas , 2019, Physical review letters.
[54] Johannes Voit,et al. One-dimensional Fermi liquids , 1995, cond-mat/9510014.
[55] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[56] H. Neven,et al. Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.
[57] Sergio Boixo,et al. Parameter estimation with mixed-state quantum computation , 2007, 0708.1330.
[58] Joseph Emerson,et al. Scalable and robust randomized benchmarking of quantum processes. , 2010, Physical review letters.
[59] A. Morello,et al. Assessment of a Silicon Quantum Dot Spin Qubit Environment via Noise Spectroscopy , 2018, Physical Review Applied.
[60] P. Segovia,et al. Observation of spin and charge collective modes in one-dimensional metallic chains , 1999, Nature.
[61] D. Cory,et al. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit , 2011 .
[62] F. Nori,et al. Quantum Simulation , 2013, Quantum Atom Optics.
[63] Frank Pollmann,et al. Simulating quantum many-body dynamics on a current digital quantum computer , 2019, npj Quantum Information.
[64] Immanuel Bloch,et al. Direct observation of incommensurate magnetism in Hubbard chains , 2018, Nature.
[65] Alán Aspuru-Guzik,et al. The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.
[66] Alán Aspuru-Guzik,et al. Quantum computational chemistry , 2018, Reviews of Modern Physics.
[67] E. Lucero,et al. Planar Superconducting Resonators with Internal Quality Factors above One Million , 2012, 1201.3384.
[68] M. Hastings,et al. Solving strongly correlated electron models on a quantum computer , 2015, 1506.05135.
[69] Spin-Charge Separation and Localization in One Dimension , 2005, Science.
[70] Balseiro,et al. Numerical study of charge and spin separation in low-dimensional systems. , 1993, Physical review. B, Condensed matter.
[71] E. Farhi,et al. A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.
[72] Naoto Nagaosa,et al. Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.
[73] R. Barends,et al. Digital quantum simulation of fermionic models with a superconducting circuit , 2015, Nature Communications.
[74] P. Delsing,et al. Decoherence benchmarking of superconducting qubits , 2019, npj Quantum Information.
[75] D. A. Ritchie,et al. Probing Spin-Charge Separation in a Tomonaga-Luttinger Liquid , 2009, Science.
[77] I. Bloch,et al. Time-resolved observation of spin-charge deconfinement in fermionic Hubbard chains , 2019, Science.
[78] Jan Kolodynski,et al. Phase estimation without a priori phase knowledge in the presence of loss , 2010, 1006.0734.
[79] Luis,et al. Optimum phase-shift estimation and the quantum description of the phase difference. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[80] E. Lieb,et al. Exact Solution of a Many-Fermion System and Its Associated Boson Field , 1965 .
[81] G. Summy,et al. PHASE OPTIMIZED QUANTUM STATES OF LIGHT , 1990 .
[82] G. Milburn,et al. Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.