Observation of separated dynamics of charge and spin in the Fermi-Hubbard model

Strongly correlated quantum systems give rise to many exotic physical phenomena, including high-temperature superconductivity. Simulating these systems on quantum computers may avoid the prohibitively high computational cost incurred in classical approaches. However, systematic errors and decoherence effects presented in current quantum devices make it difficult to achieve this. Here, we simulate the dynamics of the one-dimensional Fermi-Hubbard model using 16 qubits on a digital superconducting quantum processor. We observe separations in the spreading velocities of charge and spin densities in the highly excited regime, a regime that is beyond the conventional quasiparticle picture. To minimize systematic errors, we introduce an accurate gate calibration procedure that is fast enough to capture temporal drifts of the gate parameters. We also employ a sequence of error-mitigation techniques to reduce decoherence effects and residual systematic errors. These procedures allow us to simulate the time evolution of the model faithfully despite having over 600 two-qubit gates in our circuits. Our experiment charts a path to practical quantum simulation of strongly correlated phenomena using available quantum devices.

Masoud Mohseni | Hartmut Neven | Peter Schmitteckert | Frank Arute | Kunal Arya | Ryan Babbush | Dave Bacon | Sergio Boixo | Bob B. Buckley | Brian Burkett | Nicholas Bushnell | Zijun Chen | Roberto Collins | Sean Demura | Andrew Dunsworth | Edward Farhi | Austin Fowler | Brooks Foxen | Craig Gidney | Marissa Giustina | Rob Graff | Steve Habegger | Matthew P. Harrigan | Sabrina Hong | Trent Huang | Dvir Kafri | Kostyantyn Kechedzhi | Paul V. Klimov | Fedor Kostritsa | David Landhuis | Pavel Laptev | Mike Lindmark | Erik Lucero | Orion Martin | Jarrod R. McClean | Matt McEwen | Anthony Megrant | Wojciech Mruczkiewicz | Matthew Neeley | Murphy Yuezhen Niu | Thomas E. O'Brien | Eric Ostby | Andre Petukhov | Harald Putterman | Nicholas C. Rubin | Daniel Sank | Kevin J. Satzinger | Vadim Smelyanskiy | Doug Strain | Kevin J. Sung | Marco Szalay | Z. Jamie Yao | Adam Zalcman | Charles Neill | John M. Martinis | Michael Newman | Amit Vainsencher | Andreas Bengtsson | Pedram Roushan | Anika Marusczyk | Ofer Naaman | Michael Marthaler | Rami Barends | Alexander N. Korotkov | Joseph C. Bardin | Evan Jeffrey | Josh Mutus | Ben Chiaro | Sergei V. Isakov | Jonathan A. Gross | Lev B. Ioffe | Norm M. Tubman | Chris Quintana | Sebastian Zanker | Jan-Michael Reiner | Nicolas Vogt | Stephen J. Cotton | Zhang Jiang | Trevor McCourt | Sam McArdle | Carlos Mejuto-Zaera | Yu-An Chen | Daniel Eppens | Yu Chen | Michael Broughton | Cody Jones | D. Bacon | H. Neven | M. Mohseni | N. Tubman | J. McClean | E. Lucero | R. Barends | Yu Chen | J. Kelly | A. Megrant | D. Sank | A. Vainsencher | T. White | J. Martinis | E. Farhi | R. Babbush | A. Fowler | B. Chiaro | A. Dunsworth | E. Jeffrey | J. Mutus | M. Neeley | C. Neill | C. Quintana | P. Roushan | A. Korotkov | A. Petukhov | V. Smelyanskiy | S. Boixo | P. Yeh | D. Buell | M. Niu | P. Klimov | K. Arya | B. Burkett | Zijun Chen | R. Collins | B. Foxen | C. Gidney | M. Giustina | R. Graff | Trent Huang | D. Landhuis | O. Naaman | F. Arute | J. Bardin | M. Broughton | B. Buckley | N. Bushnell | W. Courtney | S. Demura | M. Harrigan | A. Ho | Sabrina Hong | L. Ioffe | S. Isakov | Zhang Jiang | Cody Jones | D. Kafri | K. Kechedzhi | Seon Kim | F. Kostritsa | P. Laptev | Mike Lindmark | O. Martin | M. McEwen | W. Mruczkiewicz | E. Ostby | H. Putterman | N. Rubin | K. Satzinger | D. Strain | M. Szalay | Adam Zalcman | T. Eckl | P. Schmitteckert | Sam McArdle | W. Huggins | N. Vogt | S. Zanker | Jan-Michael Reiner | A. Marusczyk | M. Marthaler | T. McCourt | Yu-An Chen | M. Newman | J. Gross | Julian Kelly | David A. Buell | William Courtney | Alan Derk | Thomas Eckl | Catherine Erickson | Alan Ho | William Huggins | Seon Kim | Xiao Mi | B'alint Pat'o | Theodore White | Ping Yeh | A. Bengtsson | Carlos Mejuto-Zaera | A. Derk | D. Eppens | C. Erickson | T. Mccourt | Z. Yao | S. Habegger | T. Huang | T. O’Brien | B. Pat'o | Xiao-Bing Mi | Kevin J Sung | Seon Kim

[1]  P. Pieri,et al.  Fermi liquids and Luttinger liquids , 2000 .

[2]  Daniel Lobser,et al.  Experimental Demonstration of a Cheap and Accurate Phase Estimation. , 2017, Physical review letters.

[3]  Holland,et al.  Interferometric detection of optical phase shifts at the Heisenberg limit. , 1993, Physical review letters.

[4]  P. Schmitteckert,et al.  Is spin-charge separation observable in a transport experiment? , 2009, 0905.4743.

[5]  L. M. K. Vandersypen,et al.  Quantum simulation of a Fermi–Hubbard model using a semiconductor quantum dot array , 2017, Nature.

[6]  Andrey E. Antipov,et al.  Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms , 2015, 1505.02290.

[7]  Elliott H. Lieb,et al.  Absence of Mott Transition in an Exact Solution of the Short-Range, One-Band Model in One Dimension , 1968 .

[8]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[9]  D. Berry,et al.  Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.

[10]  Spectral function of the one-dimensional Hubbard model away from half filling. , 2004, Physical review letters.

[11]  Shen,et al.  Observation of Spin-Charge Separation in One-Dimensional SrCuO2. , 1996, Physical review letters.

[12]  H. M. Wiseman,et al.  Demonstrating Heisenberg-limited unambiguous phase estimation without adaptive measurements , 2008, 0809.3308.

[13]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[14]  Carlton M. Caves,et al.  Qubit metrology and decoherence , 2007, 0705.1002.

[15]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[16]  Rainer Blatt,et al.  Characterizing large-scale quantum computers via cycle benchmarking , 2019, Nature Communications.

[17]  Howard Mark Wiseman,et al.  Adaptive single-shot phase measurements: A semiclassical approach , 1997 .

[18]  M. Greiner,et al.  Site-resolved measurement of the spin-correlation function in the Fermi-Hubbard model , 2016, Science.

[19]  Paola Cappellaro,et al.  Compressing measurements in quantum dynamic parameter estimation , 2013, 1308.0313.

[20]  Yudong Cao,et al.  OpenFermion: the electronic structure package for quantum computers , 2017, Quantum Science and Technology.

[21]  M. Veldhorst,et al.  Nonexponential fidelity decay in randomized benchmarking with low-frequency noise , 2015, 1502.05119.

[22]  Jonathan P. Dowling,et al.  A quantum Rosetta stone for interferometry , 2002, quant-ph/0202133.

[23]  Kevin J. Sung,et al.  Quantum algorithms to simulate many-body physics of correlated fermions. , 2017, 1711.05395.

[24]  E. Rotenberg,et al.  Distinct spinon and holon dispersions in photoemission spectral functions from one-dimensional SrCuO2 , 2006 .

[25]  Alán Aspuru-Guzik,et al.  Quantum Simulation of Electronic Structure with Linear Depth and Connectivity. , 2017, Physical review letters.

[26]  H. Neven,et al.  Fluctuations of Energy-Relaxation Times in Superconducting Qubits. , 2018, Physical review letters.

[27]  Vadim N. Smelyanskiy,et al.  Scaling laws for precision in quantum interferometry and the bifurcation landscape of the optimal state , 2010, 1006.1645.

[28]  I. Bloch,et al.  Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains , 2016, Science.

[29]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[30]  R. Kosut,et al.  Efficient measurement of quantum dynamics via compressive sensing. , 2009, Physical review letters.

[31]  S. Bartlett,et al.  Quantum methods for clock synchronization: Beating the standard quantum limit without entanglement , 2005, quant-ph/0505112.

[32]  Hartmut Neven,et al.  The Snake Optimizer for Learning Quantum Processor Control Parameters , 2020, ArXiv.

[33]  D. Bacon,et al.  Growth and preservation of entanglement in a many-body localized system , 2019, 1910.06024.

[34]  Jérôme F Gonthier,et al.  An application benchmark for fermionic quantum simulations. , 2020, 2003.01862.

[35]  John Preskill,et al.  Quantum Algorithms for Quantum Field Theories , 2011, Science.

[36]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[37]  Emanuel Knill,et al.  Quantum gate teleportation between separated qubits in a trapped-ion processor , 2019, Science.

[38]  Tyler Y Takeshita,et al.  Hartree-Fock on a superconducting qubit quantum computer , 2020, Science.

[39]  Daniel Greenbaum,et al.  Introduction to Quantum Gate Set Tomography , 2015, 1509.02921.

[40]  F. D. M. Haldanef ‘Luttinger liquid theory’ of one-dimensional quantum fluids: I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas , 1981 .

[41]  Shelby Kimmel,et al.  Robust Calibration of a Universal Single-Qubit Gate-Set via Robust Phase Estimation , 2015, 1502.02677.

[42]  Peter Maunz,et al.  Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography , 2016, Nature Communications.

[43]  J. M. Luttinger An Exactly Soluble Model of a Many‐Fermion System , 1963 .

[44]  H. Neven,et al.  Physical qubit calibration on a directed acyclic graph , 2018, 1803.03226.

[45]  F. Haldane,et al.  Luttinger liquid theory of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas , 1981 .

[46]  L. Glazman,et al.  One-dimensional quantum liquids: Beyond the Luttinger liquid paradigm , 2011, 1110.1374.

[47]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[48]  Erik Nielsen,et al.  Detecting, tracking, and eliminating drift in quantum information processors , 2019, 1907.13608.

[49]  Wiseman,et al.  Optimal states and almost optimal adaptive measurements for quantum interferometry , 2000, Physical review letters.

[50]  Yuan Feng,et al.  Parameter Estimation of Quantum Channels , 2008, IEEE Transactions on Information Theory.

[51]  Klauder,et al.  SU(2) and SU(1,1) interferometers. , 1986, Physical review. A, General physics.

[52]  T. M. Rice,et al.  Metal‐Insulator Transitions , 2003 .

[53]  Yuan Su,et al.  Nearly optimal lattice simulation by product formulas , 2019, Physical review letters.

[54]  Johannes Voit,et al.  One-dimensional Fermi liquids , 1995, cond-mat/9510014.

[55]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[56]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[57]  Sergio Boixo,et al.  Parameter estimation with mixed-state quantum computation , 2007, 0708.1330.

[58]  Joseph Emerson,et al.  Scalable and robust randomized benchmarking of quantum processes. , 2010, Physical review letters.

[59]  A. Morello,et al.  Assessment of a Silicon Quantum Dot Spin Qubit Environment via Noise Spectroscopy , 2018, Physical Review Applied.

[60]  P. Segovia,et al.  Observation of spin and charge collective modes in one-dimensional metallic chains , 1999, Nature.

[61]  D. Cory,et al.  Noise spectroscopy through dynamical decoupling with a superconducting flux qubit , 2011 .

[62]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[63]  Frank Pollmann,et al.  Simulating quantum many-body dynamics on a current digital quantum computer , 2019, npj Quantum Information.

[64]  Immanuel Bloch,et al.  Direct observation of incommensurate magnetism in Hubbard chains , 2018, Nature.

[65]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[66]  Alán Aspuru-Guzik,et al.  Quantum computational chemistry , 2018, Reviews of Modern Physics.

[67]  E. Lucero,et al.  Planar Superconducting Resonators with Internal Quality Factors above One Million , 2012, 1201.3384.

[68]  M. Hastings,et al.  Solving strongly correlated electron models on a quantum computer , 2015, 1506.05135.

[69]  Spin-Charge Separation and Localization in One Dimension , 2005, Science.

[70]  Balseiro,et al.  Numerical study of charge and spin separation in low-dimensional systems. , 1993, Physical review. B, Condensed matter.

[71]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[72]  Naoto Nagaosa,et al.  Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.

[73]  R. Barends,et al.  Digital quantum simulation of fermionic models with a superconducting circuit , 2015, Nature Communications.

[74]  P. Delsing,et al.  Decoherence benchmarking of superconducting qubits , 2019, npj Quantum Information.

[75]  D. A. Ritchie,et al.  Probing Spin-Charge Separation in a Tomonaga-Luttinger Liquid , 2009, Science.

[77]  I. Bloch,et al.  Time-resolved observation of spin-charge deconfinement in fermionic Hubbard chains , 2019, Science.

[78]  Jan Kolodynski,et al.  Phase estimation without a priori phase knowledge in the presence of loss , 2010, 1006.0734.

[79]  Luis,et al.  Optimum phase-shift estimation and the quantum description of the phase difference. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[80]  E. Lieb,et al.  Exact Solution of a Many-Fermion System and Its Associated Boson Field , 1965 .

[81]  G. Summy,et al.  PHASE OPTIMIZED QUANTUM STATES OF LIGHT , 1990 .

[82]  G. Milburn,et al.  Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.