Computer Aided Internal Optimisation (CAIO) method for fibre trajectory optimisation: A deep dive to enhance applicability

The computer aided internal optimisation (CAIO) method produces an optimised fibre layout for parts made from fibre-reinforced plastics (FRP), starting from an initial shell geometry and a given load case. Its main principle is iterative reduction of shear stresses by aligning fibre main axes with principal normal stress trajectories. Previous contributions, ranging from CAIO’s introduction over testing to extensions towards multi-layer FRP laminates, highlighted its lightweight design potential. For its application to laminate design approaches, alterations have been proposed; however, questions remain open. These questions include which convergence criteria to use, how to handle ambiguous principle normal stress trajectories, influence of using multi-layer CAIO optimisation instead of the initial single-layer CAIO and how dire consequences of slightly deviating fibre orientations from the optimised trajectories are. These challenges are discussed in depth and guidelines are given. This paper is an enhanced version of a distinguished contribution at the first symposium ‘Lightweight Design in Product Development’, Zurich (June 14–15, 2018).

[1]  Michaël Bruyneel,et al.  Composite structures optimization using sequential convex programming , 2000 .

[2]  Sandro Wartzack,et al.  INTRODUCTION OF A COMPUTATIONAL APPROACH FOR THE DESIGN OF COMPOSITE STRUCTURES AT THE EARLY EMBODIMENT DESIGN STAGE , 2015 .

[3]  Francesco Ciampa,et al.  A smart multifunctional polymer nanocomposites layer for the estimation of low-velocity impact damage in composite structures , 2010 .

[4]  Mark Walker,et al.  A technique for optimally designing fibre-reinforced laminated plates under in-plane loads for minimum weight with manufacturing uncertainties accounted for , 2006, Engineering with Computers.

[5]  Christoph Klahn,et al.  Additive Manufacturing with Composites for Integrated Aircraft Structures , 2016 .

[6]  Elmar Plischke,et al.  An effective algorithm for computing global sensitivity indices (EASI) , 2010, Reliab. Eng. Syst. Saf..

[7]  Johannes Will,et al.  Meta-model of Optimal Prognosis-An automatic approach for variable reduction and optimal meta-model selection , 2009 .

[8]  C. Mattheck,et al.  Optimization Of Fiber Arrangement With CAIO(computer Aided Internal Optimization) AndApplication To Tensile Samples , 1999 .

[9]  Claus Mattheck,et al.  Design in der Natur und nach der Natur , 1998 .

[10]  Farhana Azim Design in Nature , 2014 .

[11]  A. Crosky,et al.  Configuration of a genetic algorithm used to optimise fibre steering in composite laminates , 2012 .

[12]  Paolo Ermanni,et al.  An optimality criteria-based algorithm for efficient design optimization of laminated composites using concurrent resizing and scaling , 2018 .

[13]  H. Gea,et al.  Optimal orientation of orthotropic materials using an energy based method , 1998 .

[14]  Sandro Wartzack,et al.  CAx für Ingenieure: Eine praxisbezogene Einführung , 2018 .

[15]  Andrew C. Long,et al.  Influence of stochastic fibre angle variations on the permeability of bi-directional textile fabrics , 2006 .

[16]  A. Long,et al.  Uncertainty in the manufacturing of fibrous thermosetting composites: A review , 2014 .

[17]  Emanuele Borgonovo,et al.  Global sensitivity measures from given data , 2013, Eur. J. Oper. Res..

[18]  Martin Knops,et al.  Analysis of Failure in Fiber Polymer Laminates: The Theory of Alfred Puck , 2008 .

[19]  S. Wartzack,et al.  An efficient bionic topology optimization method for transversely isotropic materials , 2018, Composite Structures.

[20]  Sandro Wartzack,et al.  How to determine the influence of geometric deviations on elastic deformations and the structural performance? , 2013 .

[21]  Walter Michaeli,et al.  Dimensionieren mit Faserverbundkunststoffen : Einführung und praktische Hilfen , 1995 .

[22]  Merrill C.W. Lee,et al.  An algorithm for defining load paths and a load bearing topology in finite element analysis , 2011 .

[23]  Sandro Wartzack,et al.  A NOVEL APPROACH FOR THE EVALUATION OF COMPOSITE SUITABILITY OF LIGHTWEIGHT STRUCTURES AT EARLY DESIGN STAGES , 2014 .

[24]  Axel Spickenheuer Zur fertigungsgerechten Auslegung von Faser-Kunststoff-Verbundbauteilen für den extremen Leichtbau auf Basis des variabelaxialen Fadenablageverfahrens Tailored Fiber Placement , 2013 .

[25]  L. Asp,et al.  Multifunctional composite materials for energy storage in structural load paths , 2013 .

[26]  H. C. Gea,et al.  On the stress-based and strain-based methods for predicting optimal orientation of orthotropic materials , 2004 .