A polarity analysis framework for Twitter messages
暂无分享,去创建一个
Juan M. Corchado | Leandro Nunes de Castro | Ana Carolina E. S. Lima | L. Castro | J. Corchado | A. C. E. S. Lima
[1] David A. Shamma,et al. Tweet the debates: understanding community annotation of uncollected sources , 2009, WSM@MM.
[2] Songbo Tan,et al. A survey on sentiment detection of reviews , 2009, Expert Syst. Appl..
[3] Xiaolong Wang,et al. Topic sentiment analysis in twitter: a graph-based hashtag sentiment classification approach , 2011, CIKM '11.
[4] Owen Rambow,et al. Sentiment Analysis of Twitter Data , 2011 .
[5] Janyce Wiebe,et al. Learning Subjective Language , 2004, CL.
[6] Jiawei Han,et al. Data Mining: Concepts and Techniques , 2000 .
[7] Hinrich Schütze,et al. Introduction to information retrieval , 2008 .
[8] Jonathon Read,et al. Using Emoticons to Reduce Dependency in Machine Learning Techniques for Sentiment Classification , 2005, ACL.
[9] Johan Bollen,et al. Twitter mood predicts the stock market , 2010, J. Comput. Sci..
[10] Mike Thelwall,et al. Sentiment in short strength detection informal text , 2010 .
[11] Meeyoung Cha,et al. Emoticon Style: Interpreting Differences in Emoticons Across Cultures , 2013, ICWSM.
[12] Hajo Hippner,et al. Text Mining , 2006, Informatik-Spektrum.
[13] Christiane Fellbaum,et al. Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.
[14] Isabell M. Welpe,et al. Predicting Elections with Twitter: What 140 Characters Reveal about Political Sentiment , 2010, ICWSM.
[15] อนิรุธ สืบสิงห์,et al. Data Mining Practical Machine Learning Tools and Techniques , 2014 .
[16] Geert-Jan Houben,et al. Twitcident: fighting fire with information from social web streams , 2012, WWW.
[17] Grzegorz Kondrak,et al. A Comparison of Sentiment Analysis Techniques: Polarizing Movie Blogs , 2008, Canadian Conference on AI.
[18] Tobias Preis,et al. Quantifying crowd size with mobile phone and Twitter data , 2015, Royal Society Open Science.
[19] Christian M. Alis,et al. Quantifying Regional Differences in the Length of Twitter Messages , 2015, PloS one.
[20] Matjaz Perc,et al. The Matthew effect in empirical data , 2014, Journal of The Royal Society Interface.
[21] Janyce Wiebe,et al. Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2005, HLT.
[22] Rudy Prabowo,et al. Sentiment analysis: A combined approach , 2009, J. Informetrics.
[23] Aliza Sarlan,et al. Twitter sentiment analysis , 2014, Proceedings of the 6th International Conference on Information Technology and Multimedia.
[24] Bo Pang,et al. Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.
[25] Christopher D. Manning,et al. Enriching the Knowledge Sources Used in a Maximum Entropy Part-of-Speech Tagger , 2000, EMNLP.
[26] Catherine Blake,et al. Text mining , 2011, Annu. Rev. Inf. Sci. Technol..
[27] David Watson,et al. The PANAS-X manual for the positive and negative affect schedule , 1994 .
[28] E J Rayfield,et al. What makes an accurate and reliable subject-specific finite element model? A case study of an elephant femur , 2014, Journal of The Royal Society Interface.
[29] Andrea Esuli,et al. SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining , 2006, LREC.
[30] Matjaz Perc,et al. Evolution of the most common English words and phrases over the centuries , 2012, Journal of The Royal Society Interface.
[31] Akshi Kumar,et al. Sentiment Analysis: A Perspective on its Past, Present and Future , 2012 .
[32] Hiroshi Nakagawa,et al. ITC-UT: Tweet Categorization by Query Categorization for On-line Reputation Management , 2010, CLEF.
[33] Normando Rodrigues Souza Filho. MONITORAMENTO DAS REDES SOCIAIS COMO FORMA DE RELACIONAMENTO COM O CONSUMIDOR. O QUE AS EMPRESAS ESTÃO FAZENDO , 2011 .
[34] Jing Hu,et al. Culturomics meets random fractal theory: insights into long-range correlations of social and natural phenomena over the past two centuries , 2012, Journal of The Royal Society Interface.
[35] Meera Narvekar,et al. A review of techniques for sentiment analysis Of Twitter data , 2014, 2014 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT).
[36] Загоровская Ольга Владимировна,et al. Исследование влияния пола и психологических характеристик автора на количественные параметры его текста с использованием программы Linguistic Inquiry and Word Count , 2015 .
[37] John Hughes,et al. AMALGAM: Automatic Mapping Among Lexico-Grammatical Annotation Models , 1994 .
[38] Lillian Lee,et al. Opinion Mining and Sentiment Analysis , 2008, Found. Trends Inf. Retr..
[39] E. Cambria,et al. Sentic Computing , 2015, Cognitive Computation.
[40] Estevam R. Hruschka,et al. Tweet sentiment analysis with classifier ensembles , 2014, Decis. Support Syst..
[41] Claire Cardie,et al. Multi-Level Structured Models for Document-Level Sentiment Classification , 2010, EMNLP.
[42] David A. Shamma,et al. Characterizing debate performance via aggregated twitter sentiment , 2010, CHI.
[43] Leandro Matioli Santos. PROTÓTIPO PARA MINERAÇÃO DE OPINIÃO EM REDES SOCIAIS: ESTUDO DE CASOS SELECIONADOS USANDO O TWITTER , 2015 .
[44] Usman Qamar,et al. TOM: Twitter opinion mining framework using hybrid classification scheme , 2014, Decis. Support Syst..
[45] Fabrício Benevenuto,et al. Métodos para Análise de Sentimentos no Twitter , 2013 .
[46] Themis Palpanas,et al. Survey on mining subjective data on the web , 2011, Data Mining and Knowledge Discovery.
[47] J. Pennebaker,et al. The Psychological Meaning of Words: LIWC and Computerized Text Analysis Methods , 2010 .
[48] Johan Bollen,et al. Modeling Public Mood and Emotion: Twitter Sentiment and Socio-Economic Phenomena , 2009, ICWSM.
[49] A. Smeaton,et al. On Using Twitter to Monitor Political Sentiment and Predict Election Results , 2011 .
[50] Vasudeva Varma,et al. Mining Sentiments from Tweets , 2012, WASSA@ACL.
[51] Ian Witten,et al. Data Mining , 2000 .
[52] Michelle R. Guy,et al. Twitter earthquake detection: earthquake monitoring in a social world , 2012 .
[53] James W. Pennebaker,et al. Linguistic Inquiry and Word Count (LIWC2007) , 2007 .
[54] Jordan L. Boyd-Graber,et al. Grammatical structures for word-level sentiment detection , 2012, NAACL.
[55] R HruschkaEduardo,et al. Tweet sentiment analysis with classifier ensembles , 2014 .
[56] Gavin J. P. Naylor,et al. Rediscovery of the Threatened River Sharks, Glyphis garricki and G. glyphis, in Papua New Guinea , 2015, PloS one.
[57] Hong Yu,et al. Towards Answering Opinion Questions: Separating Facts from Opinions and Identifying the Polarity of Opinion Sentences , 2003, EMNLP.