Nested Grid Iteration for Incompressible Viscous Flow and Transport

We investigate the use of one-way cascadic multigrid strategies (CMG) in the solution of incompressible viscous flow using the finite element method. First we describe the basic CMG approach for representative elliptic boundary value problems and summarize the theoretical error estimates from approximation theory, desired smoother properties, and arithmetic complexity of the method. The extension of these error and complexity estimates to adaptive grids is also given. Then we present the mathematical formulation and the finite element approximation scheme for the class of fluid-thermal problems of interest. In supporting numerical experiments, we examine performance of the algorithm on both serial and distributed parallel systems. We carry out comparison studies with a standard BCG solution strategy on the fine level grid and study diagonal treatments for the zero pressure block.

[1]  P. Deuflhard,et al.  The cascadic multigrid method for elliptic problems , 1996 .

[2]  Wolfgang Dahmen,et al.  A cascadic multigrid algorithm for the Stokes equations , 1999, Numerische Mathematik.

[3]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[4]  Maxim A. Olshanskii,et al.  Effective preconditioning of Uzawa type schemes for a generalized Stokes problem , 2000, Numerische Mathematik.

[5]  Jinchao Xu,et al.  Convergence estimates for multigrid algorithms without regularity assumptions , 1991 .

[6]  Graham F. Carey,et al.  Parallel finite element solution of three-dimensional Rayleigh–Bénard–Marangoni flows , 1999 .

[7]  V. V. Shaidurov,et al.  Some estimates of the rate of convergence for the cascadic conjugate-gradient method , 1996 .

[8]  Bruce Hendrickson,et al.  Dynamic load balancing in computational mechanics , 2000 .

[9]  Peter Deuflhard,et al.  A Subspace Cascadic Multigrid Method for Mortar Elements , 2002, Computing.

[10]  Graham F. Carey,et al.  Mesh refinement and iterative solution methods for finite element computations , 1981 .

[11]  Lin Hao-min Cascadic Multigrid Method for Plate Bending Problem , 2001 .

[12]  Graham F. Carey,et al.  Computational grids : generation, adaptation, and solution strategies , 1997 .

[13]  Rob Stevenson,et al.  Nonconforming finite elements and the cascadic multi-grid method , 2002, Numerische Mathematik.

[14]  G. Carey,et al.  DISTRIBUTED PARALLEL SIMULATION OF SURFACE TENSION DRIVEN VISCOUS FLOW AND TRANSPORT PROCESSES , 2001 .

[15]  Graham F. Carey,et al.  Projection and iteration in adaptive finite element refinement , 1985 .