Singing of Neoconocephalus robustus as an example of deterministic chaos in insects

We use nonlinear time series analysis methods to analyse the dynamics of the sound-producing apparatus of the katydid Neoconocephalus robustus. We capture the dynamics by analysing a recording of the singing activity. First, we reconstruct the phase space from the sound recording and test it against determinism and stationarity. After confirming determinism and stationarity, we show that the maximal Lyapunov exponent of the series is positive, which is a strong indicator for the chaotic behaviour of the system. We discuss that methods of nonlinear time series analysis can yield instructive insights and foster the understanding of acoustic communication among insects.

[1]  J. Sprott Chaos and time-series analysis , 2001 .

[2]  T. J. Walker,et al.  The Robust Conehead: Two Widespread Sibling Species (Orthoptera: Tettigoniidae: Neoconocephalus "Robustus") , 1973 .

[3]  Robert Shaw Strange Attractors, Chaotic Behavior, and Information Flow , 1981 .

[4]  M. Perc Nonlinear time series analysis of the human electrocardiogram , 2005 .

[5]  A. Behrman,et al.  Global and local dimensions of vocal dynamics. , 1999, The Journal of the Acoustical Society of America.

[6]  H. Herzel,et al.  SUBHARMONICS, BIPHONATION, AND DETERMINISTIC CHAOS IN MAMMAL VOCALIZATION , 1998 .

[7]  M. Perc,et al.  Detecting chaos from a time series , 2005 .

[8]  W Seidner,et al.  Nonlinear phenomena in the natural howling of a dog-wolf mix. , 2000, The Journal of the Acoustical Society of America.

[9]  S. K. Mullick,et al.  NONLINEAR DYNAMICAL ANALYSIS OF SPEECH , 1996 .

[10]  D. T. Kaplan,et al.  Direct test for determinism in a time series. , 1992, Physical review letters.

[11]  M. Rosenstein,et al.  A practical method for calculating largest Lyapunov exponents from small data sets , 1993 .

[12]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[13]  A. Alwan,et al.  A nonlinear dynamical systems analysis of fricative consonants. , 1995, The Journal of the Acoustical Society of America.

[14]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[15]  I. Titze Vocal fold physiology : frontiers in basic science , 1993 .

[16]  Thomas Schreiber,et al.  Detecting and Analyzing Nonstationarity in a Time Series Using Nonlinear Cross Predictions , 1997, chao-dyn/9909044.

[17]  Tobias Riede,et al.  The harmonic-to-noise ratio applied to dog barks , 1999 .

[18]  F. Takens Detecting strange attractors in turbulence , 1981 .

[19]  M. Hauser The Evolution of Nonhuman Primate Vocalizations: Effects of Phylogeny, Body Weight, and Social Context , 1993, The American Naturalist.

[20]  Passamante,et al.  Recognizing determinism in a time series. , 1993, Physical review letters.

[21]  H. Herzel,et al.  The harmonic-to-noise ratio applied to dog barks. , 2001, Journal of the Acoustical Society of America.

[22]  N. Fletcher A class of chaotic bird calls? , 2000, The Journal of the Acoustical Society of America.

[23]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[24]  D. Berry,et al.  Analysis of vocal disorders with methods from nonlinear dynamics. , 1994, Journal of speech and hearing research.

[25]  M. Perc The dynamics of human gait , 2005 .

[26]  Isao Tokuda,et al.  Characterizing noise in nonhuman vocalizations: Acoustic analysis and human perception of barks by coyotes and dogs. , 2005, The Journal of the Acoustical Society of America.

[27]  H. Kantz A robust method to estimate the maximal Lyapunov exponent of a time series , 1994 .

[28]  Cawley,et al.  Smoothness implies determinism: A method to detect it in time series. , 1994, Physical review letters.

[29]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[30]  Hanspeter Herzel,et al.  Calls out of chaos: the adaptive significance of nonlinear phenomena in mammalian vocal production , 2002, Animal Behaviour.

[31]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[32]  Bijan Pesaran,et al.  The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird , 1998, Nature.

[33]  H. Abarbanel,et al.  Determining embedding dimension for phase-space reconstruction using a geometrical construction. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[34]  Henry D. I. Abarbanel,et al.  Analysis of Observed Chaotic Data , 1995 .

[35]  J. E. Heath,et al.  BODY TEMPERATURE AND SINGING IN THE KATYDID, NEOCONOCEPHALUS ROBUSTUS (ORTHOPTERA, TETTIGONIIDAE) , 1970 .

[36]  L. Glass,et al.  Understanding Nonlinear Dynamics , 1995 .

[37]  Holger Kantz,et al.  Practical implementation of nonlinear time series methods: The TISEAN package. , 1998, Chaos.

[38]  Hanspeter Herzel,et al.  Bifurcations and chaos in newborn infant cries , 1990 .