Unique photoelectrochemical behavior of TiO2 nanorods wrapped with novel titanium Oxy-Nitride (TiOxNy) nanoparticles

[1]  J. Jang,et al.  Enhanced solar photoelectrochemical conversion efficiency of the hydrothermally-deposited TiO 2 nanorod arrays: Effects of the light trapping and optimum charge transfer , 2018 .

[2]  Y. Sohn,et al.  ZnO-TiO2 Core–Shell Nanowires: A Sustainable Photoanode for Enhanced Photoelectrochemical Water Splitting , 2018 .

[3]  A. Trenczek-Zając,et al.  Photoactive TiO2/MoS2 electrode with prolonged stability , 2018 .

[4]  Z. Yamani,et al.  Single-step strategy for the fabrication of GaON/ZnO nanoarchitectured photoanode their experimental and computational photoelectrochemical water splitting , 2018 .

[5]  R. Dronskowski,et al.  SrTaO2N Nanowire Photoanode Modified with a Ferrihydrite Hole-Storage Layer for Photoelectrochemical Water Oxidation , 2018 .

[6]  I. Iatsunskyi,et al.  Silicon/TiO 2 core-shell nanopillar photoanodes for enhanced photoelectrochemical water oxidation , 2017 .

[7]  Yan Shao,et al.  A solar responsive photocatalytic fuel cell with a heterostructured ZnFe2O4/TiO2-NTs photoanode and an air-breathing cathode , 2017 .

[8]  Richard Dronskowski,et al.  Enhanced Photoelectrochemical Water Oxidation Efficiency of CuWO4 Photoanodes by Surface Modification with Ag2NCN , 2017 .

[9]  Yuegang Zhang,et al.  Synergistic promotion of photoelectrochemical water splitting efficiency of TiO 2 nanorods using metal-semiconducting nanoparticles , 2017 .

[10]  Nageh K. Allam,et al.  Silver Nanoparticles-Decorated Titanium Oxynitride Nanotube Arrays for Enhanced Solar Fuel Generation , 2017, Scientific Reports.

[11]  Kwang-soon Ahn,et al.  Revealing the Beneficial Effects of FeVO4 Nanoshell Layer on the BiVO4 Inverse Opal Core Layer for Photoelectrochemical Water Oxidation , 2017 .

[12]  P. Lund,et al.  Cobalt-Phosphate modified TiO2/BiVO4 nanoarrays photoanode for efficient water splitting , 2017 .

[13]  Zhiliang Wang,et al.  Understanding the anatase–rutile phase junction in charge separation and transfer in a TiO2 electrode for photoelectrochemical water splitting , 2016, Chemical Science.

[14]  Joaquin Resasco,et al.  TiO2/BiVO4 Nanowire Heterostructure Photoanodes Based on Type II Band Alignment , 2016, ACS central science.

[15]  R. van de Krol,et al.  Semiconducting materials for photoelectrochemical energy conversion , 2016, Nature Reviews Materials.

[16]  Feng Ren,et al.  3D Flowerlike α-Fe2O3@TiO2 Core–Shell Nanostructures: General Synthesis and Enhanced Photocatalytic Performance , 2015 .

[17]  Jaeyeong Heo,et al.  Joint Effects of Photoactive TiO2 and Fluoride-Doping on SnO2 Inverse Opal Nanoarchitecture for Solar Water Splitting. , 2015, ACS applied materials & interfaces.

[18]  Chongyin Yang,et al.  Black nanostructured Nb2O5 with improved solar absorption and enhanced photoelectrochemical water splitting , 2015 .

[19]  Qiang Liu,et al.  Black Ni-doped TiO2 photoanodes for high-efficiency photoelectrochemical water-splitting , 2015 .

[20]  Z. Mi,et al.  Enhancing visible-light photoelectrochemical water splitting through transition-metal doped TiO2 nanorod arrays , 2014 .

[21]  Arnold J. Forman,et al.  Modeling practical performance limits of photoelectrochemical water splitting based on the current state of materials research. , 2014, ChemSusChem.

[22]  Ting-ting Chen,et al.  Porous titanium oxynitride sheets as electrochemical electrodes for energy storage. , 2014, Nanoscale.

[23]  Zhengguo Zhang,et al.  In Situ Template-Free Ion-Exchange Process to Prepare Visible-Light-Active g-C3N4/NiS Hybrid Photocatalysts with Enhanced Hydrogen Evolution Activity , 2014 .

[24]  Kyoung-Shin Choi,et al.  Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting , 2014, Science.

[25]  Nathan S. Lewis,et al.  An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems , 2013 .

[26]  Yan Wang,et al.  Nitrogen doped TiO2 nanotube arrays with high photoelectrochemical activity for photocatalytic applications , 2013 .

[27]  R. Xie,et al.  Optical Properties of (Oxy)Nitride Materials: A Review , 2013 .

[28]  H. Ding,et al.  Facile synthesis of nitrogen self-doped rutile TiO2 nanorods , 2012 .

[29]  A. Rogach,et al.  Heterojunction Engineering of CdTe and CdSe Quantum Dots on TiO2 Nanotube Arrays: Intricate Effects of Size‐Dependency and Interfacial Contact on Photoconversion Efficiencies , 2012 .

[30]  Kazunari Domen,et al.  Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation. , 2012, Journal of the American Chemical Society.

[31]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[32]  Benjamin H. Meekins,et al.  Got TiO2 nanotubes? Lithium ion intercalation can boost their photoelectrochemical performance. , 2009, ACS nano.

[33]  Wei Zhao,et al.  Visible-light induced water detoxification catalyzed by PtII dye sensitized titania. , 2008, Journal of the American Chemical Society.

[34]  Xinhu Tang,et al.  Sulfur-Doped Highly Ordered TiO2 Nanotubular Arrays with Visible Light Response , 2008 .

[35]  M. Wuttig,et al.  Towards understanding the superior properties of transition metal oxynitrides prepared by reactive DC magnetron sputtering , 2006 .

[36]  John A. Turner,et al.  Sustainable Hydrogen Production , 2004, Science.

[37]  S. Nascimento,et al.  Preparation of magnetron sputtered TiNxOy thin films , 2003 .

[38]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[39]  R. Zbořil,et al.  Nanostar morphology of plasmonic particles strongly enhances photoelectrochemical water splitting of TiO 2 nanorods with superior incident photon-to-current conversion efficiency in visible/near-infrared region , 2018 .

[40]  W. Choi,et al.  N-doped TiO2 nanotubes coated with a thin TaOxNy layer for photoelectrochemical water splitting: dual bulk and surface modification of photoanodes , 2015 .

[41]  J. Yi,et al.  Carbon-doped TiO2 nanoparticles wrapped with nanographene as a high performance photocatalyst for phenol degradation under visible light irradiation , 2014 .