暂无分享,去创建一个
[1] Shay Moran,et al. Teaching and compressing for low VC-dimension , 2015, Electron. Colloquium Comput. Complex..
[2] David Newnham. Shattering news. , 2016, Nursing standard (Royal College of Nursing (Great Britain) : 1987).
[3] Lajos Rónyai,et al. Shattering-Extremal Set Systems of VC Dimension at most 2 , 2014, Electron. J. Comb..
[4] David Haussler,et al. Learnability and the Vapnik-Chervonenkis dimension , 1989, JACM.
[5] J. Lawrence. Lopsided sets and orthant-intersection by convex sets , 1983 .
[6] Benjamin I. P. Rubinstein,et al. A Geometric Approach to Sample Compression , 2009, J. Mach. Learn. Res..
[7] Manfred K. Warmuth,et al. Sample compression, learnability, and the Vapnik-Chervonenkis dimension , 1995, Machine Learning.
[8] Shay Moran,et al. Shattering-Extremal Systems , 2012, ArXiv.
[9] Manfred K. Warmuth,et al. Unlabeled Compression Schemes for Maximum Classes, , 2007, COLT.
[10] Peter L. Bartlett,et al. Shifting: One-inclusion mistake bounds and sample compression , 2009, J. Comput. Syst. Sci..
[11] Hans Ulrich Simon,et al. Recursive Teaching Dimension, Learning Complexity, and Maximum Classes , 2010, ALT.
[12] Temple F. Smith. Occam's razor , 1980, Nature.
[13] Shay Moran,et al. Sample compression schemes for VC classes , 2015, 2016 Information Theory and Applications Workshop (ITA).
[14] Yoav Freund,et al. Boosting: Foundations and Algorithms , 2012 .
[15] S. Shelah. A combinatorial problem; stability and order for models and theories in infinitary languages. , 1972 .
[16] Shai Ben-David,et al. Combinatorial Variability of Vapnik-chervonenkis Classes with Applications to Sample Compression Schemes , 1998, Discret. Appl. Math..
[17] Andreas W. M. Dress,et al. Towards a theory of holistic clustering , 1996, Mathematical Hierarchies and Biology.
[18] Shay Moran,et al. Shattering, Graph Orientations, and Connectivity , 2012, Electron. J. Comb..
[19] Roi Livni,et al. Honest Compressions and Their Application to Compression Schemes , 2013, COLT.
[20] Norbert Sauer,et al. On the Density of Families of Sets , 1972, J. Comb. Theory A.
[21] Béla Bollobás,et al. Reverse Kleitman Inequalities , 1989 .
[22] David Haussler,et al. Predicting {0,1}-functions on randomly drawn points , 1988, COLT '88.
[23] Manfred K. Warmuth. Compressing to VC Dimension Many Points , 2003, COLT.
[24] Manfred K. Warmuth,et al. Relating Data Compression and Learnability , 2003 .
[25] Yoav Freund,et al. Boosting a weak learning algorithm by majority , 1995, COLT '90.
[26] Pierre Simon,et al. Externally definable sets and dependent pairs II , 2012, 1202.2650.
[27] Leslie G. Valiant,et al. A theory of the learnable , 1984, STOC '84.
[28] Amit Daniely,et al. Optimal learners for multiclass problems , 2014, COLT.
[29] R Lajos. Shattering-extremal set systems of VC dimension at most 2 , 2014 .
[30] Vladimir Vapnik,et al. Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .
[31] Manfred K. Warmuth,et al. Learning integer lattices , 1990, COLT '90.
[32] Emo Welzl,et al. Vapnik-Chervonenkis dimension and (pseudo-)hyperplane arrangements , 1994, Discret. Comput. Geom..
[33] Sally Floyd,et al. Space-bounded learning and the Vapnik-Chervonenkis dimension , 1989, COLT '89.
[34] Boting Yang,et al. Generalizing Labeled and Unlabeled Sample Compression to Multi-label Concept Classes , 2014, ALT.
[35] B. Maurey,et al. Sous-espaces $l^P$ des espaces de Banach , 1983 .
[36] Shay Moran,et al. Compressing and Teaching for Low VC-Dimension , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.
[37] Peter L. Bartlett,et al. Bounding Embeddings of VC Classes into Maximum Classes , 2014, ArXiv.
[38] Lajos Rónyai,et al. Some Combinatorial Applications of Gröbner Bases , 2011, CAI.
[39] Alex M. Andrew,et al. Boosting: Foundations and Algorithms , 2012 .
[40] G. Greco,et al. Embeddings and the Trace of Finite Sets , 1998, Inf. Process. Lett..
[41] Hans-Jürgen Bandelt,et al. Combinatorics of lopsided sets , 2006, Eur. J. Comb..
[42] Béla Bollobás,et al. Defect Sauer Results , 1995, J. Comb. Theory A.