Ultralow Voltage Manipulation of Ferromagnetism

Spintronic elements based on spin transfer torque have emerged with potential for on‐chip memory, but they suffer from large energy dissipation due to the large current densities required. In contrast, an electric‐field‐driven magneto‐electric storage element can operate with capacitive displacement charge and potentially reach 1–10 µJ cm−2 switching operation. Here, magneto‐electric switching of a magnetoresistive element is shown, operating at or below 200 mV, with a pathway to get down to 100 mV. A combination of phase detuning is utilized via isovalent La substitution and thickness scaling in multiferroic BiFeO3 to scale the switching energy density to ≈10 µJ cm−2. This work provides a template to achieve attojoule‐class nonvolatile memories.

[1]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[2]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[3]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[4]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[5]  J. Meindl,et al.  Limits on silicon nanoelectronics for terascale integration. , 2001, Science.

[6]  J. Junquera,et al.  Critical thickness for ferroelectricity in perovskite ultrathin films , 2003, Nature.

[7]  O. Auciello,et al.  Ferroelectricity in Ultrathin Perovskite Films , 2004, Science.

[8]  T. Zhao,et al.  Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature , 2006, Nature materials.

[9]  M. Bibes,et al.  Multiferroics: towards a magnetoelectric memory. , 2008, Nature materials.

[10]  P. Solomon,et al.  It’s Time to Reinvent the Transistor! , 2010, Science.

[11]  Isabelle Ferain,et al.  Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors , 2011, Nature.

[12]  J. Íñiguez,et al.  First-principles predictions of low-energy phases of multiferroic BiFeO 3 , 2010, 1011.0563.

[13]  J. Íñiguez,et al.  First-principles investigation of the structural phases and enhanced response properties of the BiFeO 3 -LaFeO 3 multiferroic solid solution , 2012 .

[14]  Sergei V. Kalinin,et al.  Ultrathin limit and dead-layer effects in local polarization switching of BiFeO3 , 2012 .

[15]  Kang L. Wang,et al.  Low-power non-volatile spintronic memory: STT-RAM and beyond , 2013 .

[16]  H. Li,et al.  A learnable parallel processing architecture towards unity of memory and computing , 2015, Scientific Reports.

[17]  H-S Philip Wong,et al.  Memory leads the way to better computing. , 2015, Nature nanotechnology.

[18]  Shimeng Yu,et al.  Emerging Memory Technologies: Recent Trends and Prospects , 2016, IEEE Solid-State Circuits Magazine.

[19]  H. Ohldag,et al.  Electric-field-induced spin disorder-to-order transition near a multiferroic triple phase point , 2016, Nature Physics.

[20]  S. Kalinin Multiferroics: Making a point of control , 2017 .

[21]  Jun Yang,et al.  High Performance MRAM with Spin-Transfer-Torque and Voltage-Controlled Magnetic Anisotropy Effects , 2017 .

[22]  I. Young,et al.  Beyond CMOS computing with spin and polarization , 2018 .

[23]  Guangyu Sun,et al.  Memory that never forgets: emerging nonvolatile memory and the implication for architecture design , 2018 .

[24]  Everton Bonturim,et al.  Scalable energy-efficient magnetoelectric spin–orbit logic , 2018, Nature.

[25]  A. Chumak Magnon Spintronics , 2019, Spintronics Handbook: Spin Transport and Magnetism, Second Edition.

[26]  R. Ramesh,et al.  Advances in magnetoelectric multiferroics , 2019, Nature Materials.