Targeting the glycoproteome

[1]  G. Larson,et al.  O-Mannose and O-N-acetyl galactosamine glycosylation of mammalian α-dystroglycan is conserved in a region-specific manner. , 2012, Glycobiology.

[2]  Lawrence A Tabak,et al.  Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. , 2012, Glycobiology.

[3]  H. Wandall,et al.  Probing isoform-specific functions of polypeptide GalNAc-transferases using zinc finger nuclease glycoengineered SimpleCells , 2012, Proceedings of the National Academy of Sciences.

[4]  P. Hitchen,et al.  Glycoproteomic characterization of recombinant mouse α-dystroglycan. , 2012, Glycobiology.

[5]  K. Medzihradszky,et al.  How to Dig Deeper? Improved Enrichment Methods for Mucin Core-1 Type Glycopeptides* , 2012, Molecular & Cellular Proteomics.

[6]  Martin R Larsen,et al.  Chemical deamidation: a common pitfall in large-scale N-linked glycoproteomic mass spectrometry-based analyses. , 2012, Journal of proteome research.

[7]  Kristy Brown,et al.  Characterization of Transferrin Glycopeptide Structures in Human Cerebrospinal Fluid. , 2012, International journal of mass spectrometry.

[8]  E. Nevedomskaya,et al.  Fibrinogen alpha chain O-glycopeptides as possible markers of urinary tract infection. , 2012, Journal of proteomics.

[9]  Z. El Rassi,et al.  Liquid‐phase‐based separation systems for depletion, prefractionation and enrichment of proteins in biological fluids and matrices for in‐depth proteomics analysis – An update covering the period 2008–2011 , 2012, Electrophoresis.

[10]  Jonas Nilsson,et al.  Human Urinary Glycoproteomics; Attachment Site Specific Analysis of N- and O-Linked Glycosylations by CID and ECD* , 2011, Molecular & Cellular Proteomics.

[11]  H. Wandall,et al.  Mining the O-glycoproteome using zinc-finger nuclease–glycoengineered SimpleCell lines , 2011, Nature Methods.

[12]  Y. Maeda,et al.  Structural remodeling, trafficking and functions of glycosylphosphatidylinositol-anchored proteins. , 2011, Progress in lipid research.

[13]  M. Aebi,et al.  Mechanisms and principles of N-linked protein glycosylation. , 2011, Current opinion in structural biology.

[14]  Gerald W. Hart,et al.  O-GlcNAc signalling: implications for cancer cell biology , 2011, Nature Reviews Cancer.

[15]  Piliang Hao,et al.  Detection, Evaluation and Minimization of Nonenzymatic Deamidation in Proteomic Sample Preparation* , 2011, Molecular & Cellular Proteomics.

[16]  K. Blennow,et al.  Site-specific characterization of threonine, serine, and tyrosine glycosylations of amyloid precursor protein/amyloid β-peptides in human cerebrospinal fluid , 2011, Proceedings of the National Academy of Sciences.

[17]  Jesús Jiménez-Barbero,et al.  From lectin structure to functional glycomics: principles of the sugar code. , 2011, Trends in biochemical sciences.

[18]  Markus Aebi,et al.  Oligosaccharyltransferase: the central enzyme of N-linked protein glycosylation , 2011, Journal of Inherited Metabolic Disease.

[19]  Dirk Wolters,et al.  Boric acid gel enrichment of glycosylated proteins in human wound fluids. , 2011, Journal of proteomics.

[20]  André M Deelder,et al.  Cotton HILIC SPE microtips for microscale purification and enrichment of glycans and glycopeptides. , 2011, Analytical chemistry.

[21]  Henrik Clausen,et al.  Location, location, location: new insights into O-GalNAc protein glycosylation. , 2011, Trends in cell biology.

[22]  Jeremy C. Collette,et al.  Emerging Paradigms for the Initiation of Mucin-type Protein O-Glycosylation by the Polypeptide GalNAc Transferase Family of Glycosyltransferases* , 2011, The Journal of Biological Chemistry.

[23]  T. Rejtar,et al.  Ultrasensitive characterization of site-specific glycosylation of affinity-purified haptoglobin from lung cancer patient plasma using 10 μm i.d. porous layer open tubular liquid chromatography-linear ion trap collision-induced dissociation/electron transfer dissociation mass spectrometry. , 2011, Analytical chemistry.

[24]  A. Dell,et al.  Further insight into the roles of the glycans attached to human blood protein C inhibitor. , 2010, Biochemical and biophysical research communications.

[25]  Martin R Larsen,et al.  Selective enrichment of sialic acid–containing glycopeptides using titanium dioxide chromatography with analysis by HILIC and mass spectrometry , 2010, Nature Protocols.

[26]  V. Reinhold,et al.  The N-glycome of human plasma. , 2010, Journal of proteome research.

[27]  Jonas Nilsson,et al.  Characterization of site-specific O-glycan structures within the mucin-like domain of alpha-dystroglycan from human skeletal muscle. , 2010, Glycobiology.

[28]  N. Packer,et al.  The lectin riddle: glycoproteins fractionated from complex mixtures have similar glycomic profiles. , 2010, Omics : a journal of integrative biology.

[29]  R. Linhardt,et al.  Proteoglycomics: recent progress and future challenges. , 2010, Omics : a journal of integrative biology.

[30]  L. Tabak The role of mucin-type O-glycans in eukaryotic development. , 2010, Seminars in cell & developmental biology.

[31]  Peter R. Baker,et al.  Improved identification of O-linked glycopeptides from ETD data with optimized scoring for different charge states and cleavage specificities , 2010, Amino Acids.

[32]  S. Nishimura,et al.  Sialic Acid-focused Quantitative Mouse Serum Glycoproteomics by Multiple Reaction Monitoring Assay* , 2010, Molecular & Cellular Proteomics.

[33]  P. Højrup,et al.  Utilizing ion-pairing hydrophilic interaction chromatography solid phase extraction for efficient glycopeptide enrichment in glycoproteomics. , 2010, Analytical chemistry.

[34]  M. Raftery,et al.  Glycosylation and Sialylation of Macrophage-derived Human Apolipoprotein E Analyzed by SDS-PAGE and Mass Spectrometry , 2010, Molecular & Cellular Proteomics.

[35]  J. Ervasti,et al.  Site Mapping and Characterization of O-Glycan Structures on α-Dystroglycan Isolated from Rabbit Skeletal Muscle* , 2010, The Journal of Biological Chemistry.

[36]  B. Xia,et al.  Cosmc is an essential chaperone for correct protein O-glycosylation , 2010, Proceedings of the National Academy of Sciences.

[37]  Daniel S Spellman,et al.  Quantitative analysis of intact apolipoproteins in human HDL by top-down differential mass spectrometry , 2010, Proceedings of the National Academy of Sciences.

[38]  Martin Frank,et al.  Bioinformatics and molecular modeling in glycobiology , 2010, Cellular and Molecular Life Sciences.

[39]  Nichollas E. Scott,et al.  Simultaneous Glycan-Peptide Characterization Using Hydrophilic Interaction Chromatography and Parallel Fragmentation by CID, Higher Energy Collisional Dissociation, and Electron Transfer Dissociation MS Applied to the N-Linked Glycoproteome of Campylobacter jejuni* , 2010, Molecular & Cellular Proteomics.

[40]  André M Deelder,et al.  Protein glycosylation analysis by HILIC-LC-MS of Proteinase K-generated N- and O-glycopeptides. , 2010, Journal of separation science.

[41]  Robert J Chalkley,et al.  Mass Spectrometric Analysis, Automated Identification and Complete Annotation of O-Linked Glycopeptides , 2010, European journal of mass spectrometry.

[42]  O. Mayboroda,et al.  Mass Spectrometric Identification of Aberrantly Glycosylated Human Apolipoprotein C-III Peptides in Urine from Schistosoma mansoni-infected Individuals* , 2010, Molecular & Cellular Proteomics.

[43]  Nicolle H. Packer,et al.  Mucin‐type O‐glycosylation – putting the pieces together , 2010, The FEBS journal.

[44]  Liping Yu,et al.  O-Mannosyl Phosphorylation of Alpha-Dystroglycan Is Required for Laminin Binding , 2010, Science.

[45]  Nicolle H. Packer,et al.  Comparison of Methods for Profiling O-Glycosylation , 2009, Molecular & Cellular Proteomics.

[46]  Xiangmin Zhang,et al.  On‐plate‐selective enrichment of glycopeptides using boronic acid‐modified gold nanoparticles for direct MALDI‐QIT‐TOF MS analysis , 2009, Proteomics.

[47]  C. Hesse,et al.  Enrichment of glycopeptides for glycan structure and attachment site identification , 2009, Nature Methods.

[48]  H. Freeze,et al.  Glycosylation diseases: quo vadis? , 2009, Biochimica et biophysica acta.

[49]  G. Wiederschain,et al.  Essentials of glycobiology , 2009, Biochemistry (Moscow).

[50]  K. Medzihradszky,et al.  Affinity Enrichment and Characterization of Mucin Core-1 Type Glycopeptides from Bovine Serum* , 2009, Molecular & Cellular Proteomics.

[51]  Yukari Nakajima,et al.  Identification of glycoproteins carrying a target glycan-motif by liquid chromatography/multiple-stage mass spectrometry: identification of Lewis x-conjugated glycoproteins in mouse kidney. , 2009, Journal of proteome research.

[52]  Michael Przybylski,et al.  Elucidation of O-glycosylation structures of the beta-amyloid precursor protein by liquid chromatography-mass spectrometry using electron transfer dissociation and collision induced dissociation. , 2009, Journal of proteome research.

[53]  T. Noll,et al.  Localization of O-glycans in MUC1 glycoproteins using electron-capture dissociation fragmentation mass spectrometry. , 2009, Glycobiology.

[54]  Y. Miyagi,et al.  Targeted serum glycoproteomics for the discovery of lung cancer‐associated glycosylation disorders using lectin‐coupled ProteinChip arrays , 2009, Proteomics.

[55]  K. Killeen,et al.  Profile of native N‐linked glycan structures from human serum using high performance liquid chromatography on a microfluidic chip and time‐of‐flight mass spectrometry , 2009, Proteomics.

[56]  Sam F. Y. Li,et al.  Quantitative analysis of N-linked glycoproteins in tear fluid of climatic droplet keratopathy by glycopeptide capture and iTRAQ. , 2009, Journal of proteome research.

[57]  André M Deelder,et al.  Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry. , 2009, Mass spectrometry reviews.

[58]  Eric D. Dodds,et al.  Analytical performance of immobilized pronase for glycopeptide footprinting and implications for surpassing reductionist glycoproteomics. , 2009, Journal of proteome research.

[59]  D. Zhao,et al.  Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica. , 2009, Analytical chemistry.

[60]  W. Alley,et al.  Characterization of glycopeptides by combining collision-induced dissociation and electron-transfer dissociation mass spectrometry data. , 2009, Rapid communications in mass spectrometry : RCM.

[61]  A. M. Wu,et al.  Lectins as tools in glycoconjugate research , 2009, Glycoconjugate Journal.

[62]  E. Tian,et al.  Recent insights into the biological roles of mucin-type O-glycosylation , 2009, Glycoconjugate Journal.

[63]  J. Marth,et al.  Mammalian glycosylation in immunity , 2008, Nature reviews. Immunology.

[64]  Thomas Lütteke,et al.  Web Resources for the Glycoscientist , 2008, Chembiochem : a European journal of chemical biology.

[65]  Y. Sakurai,et al.  Increased bisecting and core-fucosylated N-glycans on mutant human amyloid precursor proteins , 2008, Glycoconjugate Journal.

[66]  A. Suzuki,et al.  Analysis of glycopeptides using lectin affinity chromatography with MALDI-TOF mass spectrometry. , 2008, Analytical chemistry.

[67]  A. Klug,et al.  Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases , 2008, Proceedings of the National Academy of Sciences.

[68]  Henrik Clausen,et al.  Mucin-type O-glycosylation and its potential use in drug and vaccine development. , 2008, Biochimica et biophysica acta.

[69]  M. Mann,et al.  Integrated analysis of the cerebrospinal fluid peptidome and proteome. , 2008, Journal of proteome research.

[70]  Masataka Fumoto,et al.  Reverse glycoblotting allows rapid-enrichment glycoproteomics of biopharmaceuticals and disease-related biomarkers. , 2007, Angewandte Chemie.

[71]  J. Peter-Katalinic,et al.  Structure elucidation of glycoproteins by direct nanoESI MS and MS/MS analysis of proteolytic glycopeptides. , 2007, Journal of mass spectrometry : JMS.

[72]  Henrik Zetterberg,et al.  Characterization of amyloid beta peptides in cerebrospinal fluid by an automated immunoprecipitation procedure followed by mass spectrometry. , 2007, Journal of proteome research.

[73]  M. Larsen,et al.  Exploring the Sialiome Using Titanium Dioxide Chromatography and Mass Spectrometry *S , 2007, Molecular & Cellular Proteomics.

[74]  D. Suckau,et al.  Analysis of glycoproteins in human serum by means of glycospecific magnetic bead separation and LC-MALDI-TOF/TOF analysis with automated glycopeptide detection. , 2007, Journal of biomolecular techniques : JBT.

[75]  M. Mann,et al.  Higher-energy C-trap dissociation for peptide modification analysis , 2007, Nature Methods.

[76]  M. J. Chalmers,et al.  Analysis of O-glycan heterogeneity in IgA1 myeloma proteins by Fourier transform ion cyclotron resonance mass spectrometry: implications for IgA nephropathy , 2007, Analytical and bioanalytical chemistry.

[77]  Rune Matthiesen,et al.  An enzymatic deglycosylation scheme enabling identification of core fucosylated N-glycans and O-glycosylation site mapping of human plasma proteins. , 2007, Journal of proteome research.

[78]  André M Deelder,et al.  Glycoproteomics based on tandem mass spectrometry of glycopeptides. , 2007, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[79]  H. Nielsen,et al.  Rapid and Individual-specific Glycoprofiling of the Low Abundance N-Glycosylated Protein Tissue Inhibitor of Metalloproteinases-1*S , 2007, Molecular & Cellular Proteomics.

[80]  Anders Wallin,et al.  An Alzheimer's disease-specific β-amyloid fragment signature in cerebrospinal fluid , 2006, Neuroscience Letters.

[81]  Hildegard Geyer,et al.  Strategies for analysis of glycoprotein glycosylation. , 2006, Biochimica et biophysica acta.

[82]  C. Sihlbom Mass spectrometry for comparative proteomics of degenerative and regenerative processes in the brain , 2006 .

[83]  J. Marth,et al.  Glycosylation in Cellular Mechanisms of Health and Disease , 2006, Cell.

[84]  M. Kostrzewa,et al.  Exploring the binding profiles of ConA, boronic acid and WGA by MALDI-TOF/TOF MS and magnetic particles. , 2006, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[85]  K. Blennow,et al.  O3-01-04 Determination of beta-amyloid peptide signatures in cerebrospinal fluid using immunoprecipitation-mass spectrometry , 2006, Alzheimer's & Dementia.

[86]  F. Altmann,et al.  Comprehensive glyco‐proteomic analysis of human α1‐antitrypsin and its charge isoforms , 2006, Proteomics.

[87]  W. Hancock,et al.  Approaches to the study of N-linked glycoproteins in human plasma using lectin affinity chromatography and nano-HPLC coupled to electrospray linear ion trap--Fourier transform mass spectrometry. , 2006, Glycobiology.

[88]  Michelle A. Anderson,et al.  Comparative serum glycoproteomics using lectin selected sialic acid glycoproteins with mass spectrometric analysis: application to pancreatic cancer serum. , 2006, Journal of proteome research.

[89]  S. Nishimura,et al.  Separation of isomeric 2-aminopyridine derivatized N-glycans and N-glycopeptides of human serum immunoglobulin G by using a zwitterionic type of hydrophilic-interaction chromatography. , 2006, Journal of chromatography. A.

[90]  Henrik Zetterberg,et al.  Determination of β-Amyloid Peptide Signatures in Cerebrospinal Fluid Using Immunoprecipitation-Mass Spectrometry , 2006 .

[91]  Albert Sickmann,et al.  Elucidation of N-Glycosylation Sites on Human Platelet Proteins , 2006, Molecular & Cellular Proteomics.

[92]  T. Hayakawa,et al.  Site-specific N-glycosylation analysis of human plasma ceruloplasmin using liquid chromatography with electrospray ionization tandem mass spectrometry. , 2006, Analytical biochemistry.

[93]  Hiroaki Nakagawa,et al.  High Throughput Quantitative Glycomics and Glycoform-focused Proteomics of Murine Dermis and Epidermis* , 2005, Molecular & Cellular Proteomics.

[94]  M. Kostrzewa,et al.  Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles. , 2005, Journal of biomolecular techniques : JBT.

[95]  Ronald J Moore,et al.  Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. , 2005, Journal of proteome research.

[96]  C. Nilsson,et al.  Prefractionation of cerebrospinal fluid to enhance glycoprotein concentration prior to structural determination with FT-ICR mass spectrometry. , 2005, Journal of proteome research.

[97]  J. Peter-Katalinic,et al.  Electron Capture Dissociation of O-Glycosylated Peptides: Radical Site-Induced Fragmentation of Glycosidic Bonds , 2005, European journal of mass spectrometry.

[98]  A. Imberty,et al.  Structural basis of high-affinity glycan recognition by bacterial and fungal lectins. , 2005, Current opinion in structural biology.

[99]  Beatrix Ueberheide,et al.  Protein identification using sequential ion/ion reactions and tandem mass spectrometry. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[100]  Yehia Mechref,et al.  Combining lectin microcolumns with high-resolution separation techniques for enrichment of glycoproteins and glycopeptides. , 2005, Analytical chemistry.

[101]  H. Cooper,et al.  Determination of Aberrant O-Glycosylation in the IgA1 Hinge Region by Electron Capture Dissociation Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry* , 2005, Journal of Biological Chemistry.

[102]  D. Harvey Structural determination of N‐linked glycans by matrix‐assisted laser desorption/ionization and electrospray ionization mass spectrometry , 2005, Proteomics.

[103]  T. Hayakawa,et al.  Site-specific glycosylation analysis of human apolipoprotein B100 using LC/ESI MS/MS. , 2005, Glycobiology.

[104]  Scott A McLuckey,et al.  Complementary structural information from a tryptic N-linked glycopeptide via electron transfer ion/ion reactions and collision-induced dissociation. , 2005, Journal of proteome research.

[105]  A. Deelder,et al.  Protein glycosylation analyzed by normal-phase nano-liquid chromatography--mass spectrometry of glycopeptides. , 2005, Analytical chemistry.

[106]  P. Højrup,et al.  Characterization of Gel-separated Glycoproteins Using Two-step Proteolytic Digestion Combined with Sequential Microcolumns and Mass Spectrometry* , 2005, Molecular & Cellular Proteomics.

[107]  S. Müller,et al.  Approaches to the O -Glycoproteome , 2005 .

[108]  John M. Walker,et al.  The Proteomics Protocols Handbook , 2005, Humana Press.

[109]  N. Sharon,et al.  History of lectins: from hemagglutinins to biological recognition molecules. , 2004, Glycobiology.

[110]  W. Hancock,et al.  Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column. , 2004, Journal of chromatography. A.

[111]  M. Tajiri,et al.  Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. , 2004, Analytical chemistry.

[112]  A. Kobata The third chains of living organisms--a trail of glycobiology that started from the third floor of building 4 in NIH. , 2004, Archives of biochemistry and biophysics.

[113]  A. Podtelejnikov,et al.  Screening for N‐glycosylated proteins by liquid chromatography mass spectrometry , 2004, Proteomics.

[114]  Ruedi Aebersold,et al.  Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry , 2003, Nature Biotechnology.

[115]  J. Hirabayashi,et al.  Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins , 2003, Nature Biotechnology.

[116]  Frank Kjeldsen,et al.  Complete characterization of posttranslational modification sites in the bovine milk protein PP3 by tandem mass spectrometry with electron capture dissociation as the last stage. , 2003, Analytical chemistry.

[117]  John R Yates,et al.  Cleavage N-terminal to proline: analysis of a database of peptide tandem mass spectra. , 2003, Analytical chemistry.

[118]  Lawrence A Tabak,et al.  All in the family: the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases. , 2003, Glycobiology.

[119]  Lance Wells,et al.  Mapping Sites of O-GlcNAc Modification Using Affinity Tags for Serine and Threonine Post-translational Modifications* , 2002, Molecular & Cellular Proteomics.

[120]  M. Burger Wheat Germ Agglutinin , 2002 .

[121]  A G Marshall,et al.  Electron capture dissociation and infrared multiphoton dissociation MS/MS of an N-glycosylated tryptic peptic to yield complementary sequence information. , 2001, Analytical chemistry.

[122]  Gerald W. Hart,et al.  Glycosylation of Nucleocytoplasmic Proteins: Signal Transduction and O-GlcNAc , 2001, Science.

[123]  P. Roepstorff,et al.  Mass spectrometric determination of O-glycosylation sites using beta-elimination and partial acid hydrolysis. , 2001, Analytical chemistry.

[124]  Catherine A. Cooper,et al.  GlycoMod – A software tool for determining glycosylation compositions from mass spectrometric data , 2001, Proteomics.

[125]  P. Schulz-Knappe,et al.  Posttranslationally processed forms of the human chemokine HCC-1. , 2000, Biochemistry.

[126]  L. Wyns,et al.  An Unusual Carbohydrate Binding Site Revealed by the Structures of Two Maackia amurensis Lectins Complexed with Sialic Acid-containing Oligosaccharides* , 2000, The Journal of Biological Chemistry.

[127]  R. Haltiwanger,et al.  Mammalian Notch1 Is Modified with Two Unusual Forms ofO-Linked Glycosylation Found on Epidermal Growth Factor-like Modules* , 2000, The Journal of Biological Chemistry.

[128]  S. Spitalnik,et al.  Study of the sugar chains of recombinant human amyloid precursor protein produced by Chinese hamster ovary cells. , 1999, Biochimica et biophysica acta.

[129]  R. Zubarev,et al.  Localization of O-glycosylation sites in peptides by electron capture dissociation in a Fourier transform mass spectrometer. , 1999, Analytical chemistry.

[130]  P. Roepstorff,et al.  Partial vapor-phase hydrolysis of peptide bonds: A method for mass spectrometric determination of O-glycosylated sites in glycopeptides. , 1999, Analytical biochemistry.

[131]  D. Aunis,et al.  Phosphorylation and O-Glycosylation Sites of Bovine Chromogranin A from Adrenal Medullary Chromaffin Granules and Their Relationship with Biological Activities* , 1997, The Journal of Biological Chemistry.

[132]  I. Kanazawa,et al.  Structures of Sialylated O-Linked Oligosaccharides of Bovine Peripheral Nerve α-Dystroglycan , 1997, The Journal of Biological Chemistry.

[133]  I. Kanazawa,et al.  Structures of sialylated O-linked oligosaccharides of bovine peripheral nerve alpha-dystroglycan. The role of a novel O-mannosyl-type oligosaccharide in the binding of alpha-dystroglycan with laminin. , 1997, The Journal of biological chemistry.

[134]  H. Gabius Animal lectins. , 1997, European journal of biochemistry.

[135]  S. Spitalnik,et al.  The role of glycosylation in synthesis and secretion of beta-amyloid precursor protein by Chinese hamster ovary cells. , 1996, Archives of biochemistry and biophysics.

[136]  B K Hayes,et al.  Selective detection and site-analysis of O-GlcNAc-modified glycopeptides by beta-elimination and tandem electrospray mass spectrometry. , 1996, Analytical biochemistry.

[137]  R. Cummings,et al.  Isolation and characterization of human milk bile salt-activated lipase C-tail fragment. , 1995, Biochemistry.

[138]  H. Gabius,et al.  Non-carbohydrate binding partners/domains of animal lectins. , 1994, The International journal of biochemistry.

[139]  M F Bean,et al.  Collisional fragmentation of glycopeptides by electrospray ionization LC/MS and LC/MS/MS: methods for selective detection of glycopeptides in protein digests. , 1993, Analytical chemistry.

[140]  A. Kobata Structures and functions of the sugar chains of glycoproteins. , 1988, European journal of biochemistry.

[141]  K L Williams,et al.  Glycosylation sites identified by detection of glycosylated amino acids released from Edman degradation: the identification of Xaa-Pro-Xaa-Xaa as a motif for Thr-O-glycosylation. , 1991, Biochemical and biophysical research communications.

[142]  I. Goldstein,et al.  Characterization of the carbohydrate binding specificity of the leukoagglutinating lectin from Maackia amurensis. Comparison with other sialic acid-specific lectins. , 1991, The Journal of biological chemistry.

[143]  A. Hjerpe,et al.  Location and characterization of the three carbohydrate prosthetic groups of human protein HC , 1990, FEBS letters.

[144]  R. A. Laine Glycoconjugates: overview and strategy. , 1990, Methods in enzymology.

[145]  B. Chait,et al.  Apolipoprotein C-III0 lacks carbohydrate residues: use of mass spectrometry to study apolipoprotein structure. , 1989, Journal of lipid research.

[146]  F. Maley,et al.  Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. , 1989, Analytical biochemistry.

[147]  J. Taylor,et al.  Glycosylation of human apolipoprotein E. The carbohydrate attachment site is threonine 194. , 1989, The Journal of biological chemistry.

[148]  S. Funderud,et al.  Monosized, magnetic polymer particles: Their use in separation of cells and subcellular components, and in the study of lymphocyte function in vitro , 1988, Journal of molecular recognition : JMR.

[149]  T. Ogura,et al.  Molecular cloning of a human apoC-III variant: Thr 74----Ala 74 mutation prevents O-glycosylation. , 1987, Journal of lipid research.

[150]  I. Goldstein,et al.  The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(alpha 2-6)Gal/GalNAc sequence. , 1987, The Journal of biological chemistry.

[151]  A. Tarentino,et al.  Demonstration of peptide:N-glycosidase F activity in endo-beta-N-acetylglucosaminidase F preparations. , 1984, The Journal of biological chemistry.

[152]  I. Goldstein,et al.  Interaction of wheat germ agglutinin with sialic acid. , 1979, Biochemistry.

[153]  J U Baenziger,et al.  Structural determinants of concanavalin A specificity for oligosaccharides. , 1979, The Journal of biological chemistry.

[154]  M. Burger,et al.  Wheat germ agglutinin. Molecular characteristics and specificity for sugar binding. , 1974, The Journal of biological chemistry.