The Orestes Melt Zone, McMurdo Dry Valleys, Antarctica: Spatially Distributed Melting Regimes in a Contact Melt Zone, with Implications for the Formation of Rapakivi and Albite Granites

The Orestes Melt Zone (OMZ) is a massive contact melt zone (∼20 m thick by several kilometers long), located in the McMurdo Dry Valleys of Antarctica. The OMZ formed at shallow crustal depths by melting of the A-type Orestes Granite owing to intrusion of the underlying, doleritic Basement Sill. The OMZ can be divided broadly into two melting facies. The upper melting facies is distal from the contact and formed by melting at low temperature and water-saturated, or near water-saturated, conditions. The lower melting facies is proximal to the contact and formed by melting at high temperature and water-undersaturated conditions. Separate melting reactions occurred in both of the melting facies, resulting in distinct textures and melt compositions. Melting in the distal facies generated melts with compositions that plot near a predicted eutectic composition. Melting in the proximal facies was accomplished in part by replacement reactions in restitic feldspars. These reactions resulted in the development of plagioclase mantles on both restitic plagioclase and K-feldspar, and melt compositions that diverged from predicted minimum melt along an unexpected path, towards enrichment in orthoclase component. Thermal modeling indicates that this melt zone was active for a minimum of ∼150 years, with a contact temperature of ∼900 °C. Upon cooling, recrystallization generated ocellar textures around restitic quartz, as well as faceted albite as a late-stage product. Observations of the OMZ, combined with thermal modeling, provide new insights into the origin of rapakivi and albite granites. This study has implications for the origin of these two associated granite types in other geological settings.

[1]  R. Currier,et al.  Textural analyses of classical rapakivi granites: Texture formation through coarsening, size-selective replacement, and stirring , 2019, Precambrian Research.

[2]  T. Andersen,et al.  Zircon as a Proxy for the Magmatic Evolution of Proterozoic Ferroan Granites; the Wiborg Rapakivi Granite Batholith, SE Finland , 2017 .

[3]  C. Annen Factors Affecting the Thickness of Thermal Aureoles , 2017, Front. Earth Sci..

[4]  R. Vernon,et al.  Rapakivi granite problems: plagioclase mantles and ovoid megacrysts , 2016 .

[5]  C. Jackson,et al.  Lateral Magma Flow in Mafic Sill‐complexes , 2016 .

[6]  R. Hoffbauer,et al.  Melting behaviour of feldspar clasts in high-fired Sue ware , 2016 .

[7]  C. McLeod,et al.  A spectrum of disequilibrium melting preserved in lava-hosted, partially melted crustal xenoliths from the Wudalianchi volcanic field, NE China , 2015 .

[8]  George W. Bergantz,et al.  Open-system dynamics and mixing in magma mushes , 2015 .

[9]  S. Hauck,,et al.  Partial Melting Processes and Cu-Ni-PGE Mineralization in the Footwall of the South Kawishiwi Intrusion at the Spruce Road Deposit, Duluth Complex, Minnesota , 2015 .

[10]  M. Pawley,et al.  Demystifying migmatites: introduction for field-based geologist , 2015 .

[11]  M. Ghiorso,et al.  An H2O–CO2 mixed fluid saturation model compatible with rhyolite-MELTS , 2015, Contributions to Mineralogy and Petrology.

[12]  E. Klemetti,et al.  Localized Rejuvenation of a Crystal Mush Recorded in Zircon Temporal and Compositional Variation at the Lassen Volcanic Center, Northern California , 2014, PloS one.

[13]  F. Bussy,et al.  Petrogenesis of magmatic albite granites associated to cogenetic A-type granites: Na-rich residual melt extraction from a partially crystallized A-type granite mush , 2013 .

[14]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[15]  A. Hofmann,et al.  Two-Stage, Extreme Albitization of A-type Granites from Rajasthan, NW India , 2012 .

[16]  R. Mills,et al.  Experimental evidence for crystal coarsening and fabric development during temperature cycling , 2011 .

[17]  A. Leitch,et al.  Silicic Segregations of the Ferrar Dolerite Sills, Antarctica , 2011 .

[18]  M. Brown,et al.  When the Continental Crust Melts , 2011 .

[19]  B. Frost,et al.  On Ferroan (A-type) Granitoids: their Compositional Variability and Modes of Origin , 2011 .

[20]  M. Ghiorso,et al.  Rhyolite-MELTS: a Modified Calibration of MELTS Optimized for Silica-rich, Fluid-bearing Magmatic Systems , 2010 .

[21]  T. Andersen,et al.  Re-evaluation of Rapakivi Petrogenesis: Source Constraints from the Hf Isotope Composition of Zircon in the Rapakivi Granites and Associated Mafic Rocks of Southern Finland , 2010 .

[22]  E. Sawyer Migmatites formed by water-fluxed partial melting of a leucogranodiorite protolith: Microstructures in the residual rocks and source of the fluid , 2010 .

[23]  A. Glazner,et al.  Formation of K-feldspar megacrysts in granodioritic plutons by thermal cycling and late-stage textural coarsening , 2010 .

[24]  R. Dall’Agnol,et al.  THE PERALKALINE TIN-MINERALIZED MADEIRA CRYOLITE ALBITE-RICH GRANITE OF PITINGA, AMAZONIAN CRATON, BRAZIL: PETROGRAPHY, MINERALOGY AND CRYSTALLIZATION PROCESSES , 2009 .

[25]  A. Putnis,et al.  The Complex Hydrothermal History of Granitic Rocks: Multiple Feldspar Replacement Reactions under Subsolidus Conditions , 2009 .

[26]  A. Müller,et al.  COMPOSITIONAL ZONING OF RAPAKIVI FELDSPARS AND COEXISTING QUARTZ PHENOCRYSTS , 2008 .

[27]  J. Bédard,et al.  Large-scale Mechanical Redistribution of Orthopyroxene and Plagioclase in the Basement Sill, Ferrar Dolerites, McMurdo Dry Valleys, Antarctica: Petrological, Mineral-chemical and Field Evidence for Channelized Movement of Crystals and Melt , 2007 .

[28]  A. Simon,et al.  Contact Partial Melting of Granitic Country Rock, Melt Segregation, and Re-injection as Dikes into Ferrar Dolerite Sills, McMurdo Dry Valleys, Antarctica , 2007 .

[29]  S. E. CanurcHAEL A NOTE ON THE NATURAL FUSION OF GRANITE Youv.q Ar.-RlwrlNo I.qN , 2007 .

[30]  J. Cartwright,et al.  Magma transport through the crust via interconnected sill complexes , 2006 .

[31]  E. Watson,et al.  TitaniQ: a titanium-in-quartz geothermometer , 2006 .

[32]  A. Acosta-Vigil,et al.  Experiments on the kinetics of partial melting of a leucogranite at 200 MPa H2O and 690–800°C: compositional variability of melts during the onset of H2O-saturated crustal anatexis , 2006 .

[33]  T. Flood,et al.  Geochemistry of silicic magmas in the Macolod Corridor, SW Luzon, Philippines: evidence of distinct, mantle-derived, crustal sources for silicic magmas , 2006 .

[34]  J. Dufek,et al.  Lower Crustal Magma Genesis and Preservation: a Stochastic Framework for the Evaluation of Basalt–Crust Interaction , 2005 .

[35]  F. Villieras,et al.  Melting kinetics of granitic powder aggregates at 1175°C, 1 atm. , 2005 .

[36]  J. Vigneresse,et al.  The specific case of the Mid-Proterozoic rapakivi granites and associated suite within the context of the Columbia supercontinent , 2005 .

[37]  M. Holness,et al.  Melting and melt segregation in the aureole of the Glenmore Plug, Ardnamurchan , 2005 .

[38]  O. Bachmann,et al.  On the Origin of Crystal-poor Rhyolites: Extracted from Batholithic Crystal Mushes , 2004 .

[39]  K. Thomson,et al.  Geometry and growth of sill complexes: insights using 3D seismic from the North Rockall Trough , 2004 .

[40]  B. Chappell Towards a unified model for granite genesis , 2004, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[41]  H. L. Petcovic,et al.  Textural and Thermal History of Partial Melting in Tonalitic Wallrock at the Margin of a Basalt Dike, Wallowa Mountains, Oregon , 2003 .

[42]  N. Chaudhri Characterisation of the Dabla Granitoids, North Khetri Copper Belt, Rajasthan, India: Evidence of Bimodal Anorogenic Felsic Magmatism , 2003 .

[43]  Fergus G. F. Gibb,et al.  Partial melting and recrystallization of granite and their application to deep disposal of radioactive waste: Part 1—Rationale and partial melting , 2003 .

[44]  R. Sparks,et al.  Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust , 2002 .

[45]  M. Feely,et al.  Magma mixing and mingling textures in granitoids: examples from the Galway Granite, Connemara, Ireland , 2002 .

[46]  J. Lowenstern,et al.  VOLATILECALC: a silicate melt-H 2 O-CO 2 solution model written in Visual Basic for excel , 2002 .

[47]  Calvin G. Barnes,et al.  A Geochemical Classification for Granitic Rocks , 2001 .

[48]  P. King,et al.  Are A‐type granites the high‐temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite , 2001 .

[49]  R. Sparks,et al.  Mineral disequilibrium in lavas explained by convective self-mixing in open magma chambers , 2001, Nature.

[50]  R. Pankhurst,et al.  Origins of Large Volume Rhyolitic Volcanism in the Antarctic Peninsula and Patagonia by Crustal Melting , 2001 .

[51]  E. Sawyer Melt segregation in the continental crust: distribution and movement of melt in anatectic rocks , 2001 .

[52]  L. Kriegsman Partial melting, partial melt extraction and partial back reaction in anatectic migmatites , 2001 .

[53]  A. Castro Plagioclase morphologies in assimilation experiments. Implications for disequilibrium melting in the generation of granodiorite rocks , 2001 .

[54]  S. Cox,et al.  Isotopic character of Cambro‐Ordovician plutonism, southern Victoria Land, Antarctica , 2000 .

[55]  L. Hecht,et al.  Mineralogical and geochemical characteristics of hydrothermal alteration and episyenitization in the Königshain granites, northern Bohemian Massif, Germany , 1999 .

[56]  O. Eklund The origin of rapakivi texture by sub-isothermal decompression , 1999 .

[57]  N. Laube,et al.  Crustal melting by ponding of mafic magmas: A numerical model , 1998 .

[58]  I. Haapala Magmatic and Postmagmatic Processes in Tin-mineralized Granites: Topaz-bearing Leucogranite in the Eurajoki Rapakivi Granite Stock, Finland , 1997 .

[59]  A. P. Douce,et al.  Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids , 1997 .

[60]  K. Foland,et al.  40Ar/39Ar geochronology of Ferrar Dolerite sills from the Transantarctic Mountains, Antarctica: Implications for the age and origin of the Ferrar magmatic province , 1997 .

[61]  M. Bau Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect , 1996 .

[62]  B. Marsh Solidification fronts and magmatic evolution , 1996, Mineralogical Magazine.

[63]  E. Sawyer Melt segregation and magma flow in migmatites: implications for the generation of granite magmas , 1996, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[64]  I. Haapala Metallogeny of the Rapakivi granites , 1995 .

[65]  D. Gasquet,et al.  Melting and undercooled crystallisation of felsic xenoliths from minor intrusions (Jebilet massif, Morocco) , 1995 .

[66]  C. Barrie Zircon thermometry of high-temperature rhyolites near volcanic-associated massive sulfide deposits, Abitibi subprovince, Canada , 1995 .

[67]  T. Dempster,et al.  The Origin of Rapakivi Texture , 1994 .

[68]  O. Eklund,et al.  Magma mixing, the petrogenetic link between anorthositic suites and rapakivi granites, Åland,SW Finland , 1994 .

[69]  A. Korja,et al.  Geophysical interpretation of the crustal and upper mantle structure in the Wiborg rapakivi granite area, southeastern Finland , 1993 .

[70]  A. Philpotts,et al.  Wallrock Melting and Reaction Effects along the Higganum Diabase Dike in Connecticut: Contamination of a Continental Flood Basalt Feeder , 1993 .

[71]  S. Cox,et al.  Granitoids of the Dry Valleys area, southern Victoria Land: geochemistry and evolution along the early Paleozoic antarctic craton margin , 1993 .

[72]  S. Cox,et al.  Granitoids of the Dry Valleys area, southern Victoria Land, Antarctica: Plutons, field relationships, and isotopic dating , 1993 .

[73]  J. Stimac,et al.  Origin of mantle (rapakivi) feldspars: experimental evidence of a dissolution- and diffusion-controlled mechanism , 1992 .

[74]  H. Nekvasil Tertiary feldspar crystallization in high-temperature felsic magmas , 1992 .

[75]  K. P. Skjerlie,et al.  Vapor-absent melting at 10 kbar of a biotite- and amphibole-bearing tonalitic gneiss: Implications for the generation of A-type granites , 1992 .

[76]  T. Dempster,et al.  The rapakivi granites of S Greenland—crustal melting in response to extensional tectonics and magmatic underplating , 1992, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[77]  C. Bacon Partially melted granodiorite and related rocks ejected from Crater Lake caldera, Oregon , 1992, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[78]  O. Rämö,et al.  Tectonic setting and origin of the Proterozoic rapakivi granites of southeastern Fennoscandia , 1992, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[79]  H. Nekvasil Ascent of felsic magmas and formation of rapakivi , 1991 .

[80]  F. Bussy The rapakivi texture of feldspars in a plutonic mixing environment: A dissolution-recrystallization process? , 1990 .

[81]  R. H. Worden,et al.  Development of microporosity, diffusion channels and deuteric coarsening in perthitic alkali feldspars , 1990 .

[82]  D. Kitchen The disequilibrium partial melting and assimilation of Caledonian granite by Tertiary basalt at Barnesmore, Co. Donegal , 1989, Geological Magazine.

[83]  F. Spear,et al.  A petrogenetic grid for pelitic schists in the system SiO2-Al2O3-FeO-MgO-K2O-H2O , 1989 .

[84]  G. Hanson,et al.  Disequilibrium Melting of Granite at the Contact with a Basic Plug: A Geochemical and Petrographic Study , 1988, The Journal of Geology.

[85]  B. Chappell,et al.  The Importance of Residual Source Material (Restite) in Granite Petrogenesis , 1987 .

[86]  V. Colten-Bradley Role of Pressure in Smectite Dehydration--Effects on Geopressure and Smectite-to-Illite Transformation , 1987 .

[87]  Robert F. Martin,et al.  Phase equilibria of a fluorine-rich leucogranite from the St. Austell pluton, Cornwall , 1987 .

[88]  D. Gapais,et al.  Quartz fabric transition in a cooling syntectonic granite (Hermitage massif, France) , 1986 .

[89]  A. Tsuchiyama Dissolution kinetics of plagioclase in the melt of the system diopside-albite-anorthite, and origin of dusty plagioclase in andesites , 1985 .

[90]  D. Elthon,et al.  Unusual ocellar textures in diabases from the Sarmiento ophiolite complex, Chile , 1984 .

[91]  A. Tsuchiyama,et al.  Melting kinetics of a plagioclase feldspar , 1983 .

[92]  E. Christiansen,et al.  The petrogenesis of topaz rhyolites from the western United States , 1983 .

[93]  E. Christiansen,et al.  Topaz rhyolites; distribution, origin, and significance for exploration , 1982 .

[94]  M. Hibbard The magma mixing origin of mantled feldspars , 1981 .

[95]  D. Manning The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb , 1981 .

[96]  R. Maitre Partially Fused Granite Blocks from Mt. Elephant, Victoria, Australia , 1974 .

[97]  A. T. Anderson Oxidation of the LaBlache Lake Titaniferous Magnetite Deposit, Quebec , 1968, The Journal of Geology.

[98]  R. B. Furlong Electron Diffraction and Micrographic Study of the High-Temperature Changes in Illite and Montmorillonite Under Continuous Heating Conditions , 1967 .

[99]  A. Tobi,et al.  A chart for judging the reliability of point counting results , 1965 .

[100]  E. Roseboom,et al.  Lower Temperature Terminations of the Three-phase Region Plagioclase-Alkali Feldspar-Liquid, , 1962 .

[101]  O. F. Tuttle,et al.  ORIGIN OF GRANITE IN THE LIGHT OF EXPERIMENTAL STUDIES IN THE SYSTEM NaAlSi3O8–KAlSi3O8–SiO2–H2O , 1958 .

[102]  J. C. Jaeger The temperature in the neighborhood of a cooling intrusive sheet , 1957 .